科目: 來源: 題型:
【題目】在平面直角坐標(biāo)系中,將曲線(為參數(shù)) 上任意一點(diǎn)經(jīng)過伸縮變換后得到曲線.以坐標(biāo)原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸,建立極坐標(biāo)系,直線的極坐標(biāo)方程為.
(1)求直線的普通方程和曲線的直角坐標(biāo)方程;
(2)設(shè)直線與曲線交于兩點(diǎn),,求的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】某企業(yè)引進(jìn)現(xiàn)代化管理體制,生產(chǎn)效益明顯提高,2019年全年總收入與2018年全年總收入相比增長了一倍,同時(shí)該企業(yè)的各項(xiàng)運(yùn)營成本也隨著收入的變化發(fā)生相應(yīng)變化,下圖給出了該企業(yè)這兩年不同運(yùn)營成本占全年總收入的比例,下列說法錯(cuò)誤的是( )
A.該企業(yè)2019年研發(fā)的費(fèi)用與原材料的費(fèi)用超過當(dāng)年總收入的50%
B.該企業(yè)2019年設(shè)備支出金額及原材料的費(fèi)用均與2018相當(dāng)
C.該企業(yè)2019年工資支出總額比2018年多一倍
D.該企業(yè)2018年與2019研發(fā)的總費(fèi)用占這兩年總收入的20%
查看答案和解析>>
科目: 來源: 題型:
【題目】農(nóng)歷五月初五是端午節(jié),民間有吃粽子的習(xí)慣,粽子又稱粽籺,俗稱“粽子”,古稱“角黍”,是端午節(jié)大家都會(huì)品嘗的食品,傳說這是為了紀(jì)念戰(zhàn)國時(shí)期楚國大臣、愛國主義詩人屈原.如圖,平行四邊形形狀的紙片是由六個(gè)邊長為的正三角形構(gòu)成的,將它沿虛線折起來,可以得到如圖所示粽子形狀的六面體,則該六面體的體積為____;若該六面體內(nèi)有一球,則該球表面積的最大值為____.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù)(,是自然對數(shù)的底數(shù)),是函數(shù)的一個(gè)極值點(diǎn).
(1)求函數(shù)的單調(diào)遞增區(qū)間;
(2)設(shè),若,不等式恒成立,求的最大值.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知點(diǎn)F是拋物線的焦點(diǎn),若點(diǎn)在拋物線C上,且
(1)求拋物線C的方程;
(2)動(dòng)直線與拋物線C相交于兩點(diǎn),問:在x軸上是否存在定點(diǎn)(其中),使得x軸平分?若存在,求出點(diǎn)D的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在四面體ABCD中,AC=6,BA=BC=5,AD=CD=3 .
(1)求證:AC⊥BD;
(2)當(dāng)四面體ABCD的體積最大時(shí),求點(diǎn)A到平面BCD的距離.
查看答案和解析>>
科目: 來源: 題型:
【題目】2022年北京冬奧會(huì)的申辦成功與“3億人上冰雪”口號的提出,將冰雪這個(gè)冷項(xiàng)目迅速炒“熱”.北京某綜合大學(xué)計(jì)劃在一年級開設(shè)冰球課程,為了解學(xué)生對冰球運(yùn)動(dòng)的興趣,隨機(jī)從該校一年級學(xué)生中抽取了100人進(jìn)行調(diào)查,其中女生中對冰球運(yùn)動(dòng)有興趣的占,而男生有10人表示對冰球運(yùn)動(dòng)沒有興趣額.
(1)完成列聯(lián)表,并回答能否有的把握認(rèn)為“對冰球是否有興趣與性別有關(guān)”?
有興趣 | 沒興趣 | 合計(jì) | |
男 | 55 | ||
女 | |||
合計(jì) |
(2)已知在被調(diào)查的女生中有5名數(shù)學(xué)系的學(xué)生,其中3名對冰球有興趣,現(xiàn)在從這5名學(xué)生中隨機(jī)抽取3人,求至少有2人對冰球有興趣的概率.
附表:
0.150 | 0.100 | 0.050 | 0.025 | 0.010 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目: 來源: 題型:
【題目】在平面直角坐標(biāo)系中,圓的參數(shù)方程為為參數(shù)),在以原點(diǎn)為極點(diǎn), 軸的非負(fù)半軸為極軸建立的極坐標(biāo)系中,直線的極坐標(biāo)方程為.
(1)求圓的普通方程和直線的直角坐標(biāo)方程;
(2)設(shè)直線與軸, 軸分別交于兩點(diǎn),點(diǎn)是圓上任一點(diǎn),求兩點(diǎn)的極坐標(biāo)和面積的最小值
查看答案和解析>>
科目: 來源: 題型:
【題目】設(shè)函數(shù),.
(1)若曲線在點(diǎn)處的切線與直線垂直,求的單調(diào)性和極小值(其中為自然對數(shù)的底數(shù));
(2)若對任意的,恒成立,求的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】隨著網(wǎng)絡(luò)營銷和電子商務(wù)的興起,人們的購物方式更具多樣化,某調(diào)查機(jī)構(gòu)隨機(jī)抽取10名購物者進(jìn)行采訪,5名男性購物者中有3名傾向于選擇網(wǎng)購,2名傾向于選擇實(shí)體店,5名女性購物者中有2名傾向于選擇網(wǎng)購,3名傾向于選擇實(shí)體店.
(1)若從10名購物者中隨機(jī)抽取2名,其中男、女各一名,求至少1名傾向于選擇實(shí)體店的概率;
(2)若從這10名購物者中隨機(jī)抽取3名,設(shè)X表示抽到傾向于選擇網(wǎng)購的男性購物者的人數(shù),求X的分布列和數(shù)學(xué)期望.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com