科目: 來源: 題型:
【題目】在極坐標(biāo)系中,已知點(diǎn)到直線的距離為3.
(1)求實(shí)數(shù)的值;
(2)設(shè)是直線上的動(dòng)點(diǎn),在線段上,且滿足,求點(diǎn)軌跡方程,并指出軌跡是什么圖形.
查看答案和解析>>
科目: 來源: 題型:
【題目】設(shè)橢圓的左、右焦點(diǎn)分別為,上頂點(diǎn)為,離心率為, 在軸負(fù)半軸上有一點(diǎn),且
(1)若過三點(diǎn)的圓 恰好與直線相切,求橢圓C的方程;
(2)在(1)的條件下,過右焦點(diǎn)作斜率為的直線與橢圓C交于兩點(diǎn),在軸上是否存在點(diǎn),使得以為鄰邊的平行四邊形是菱形,如果存在,求出的取值范圍;如果不存在,說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】為了增強(qiáng)學(xué)生的環(huán)境意識(shí),某中學(xué)隨機(jī)抽取了50名學(xué)生舉行了一次環(huán)保知識(shí)競(jìng)賽,本次競(jìng)賽的成績(jī)(得分均為整數(shù),滿分100分)整理,制成下表:
成績(jī) | ||||||
頻數(shù) | 2 | 3 | 14 | 15 | 14 | 4 |
(1)作出被抽查學(xué)生成績(jī)的頻率分布直方圖;
(2)若從成績(jī)?cè)?/span>中選一名學(xué)生,從成績(jī)?cè)?/span>中選出2名學(xué)生,共3名學(xué)生召開座談會(huì),求組中學(xué)生和組中學(xué)生同時(shí)被選中的概率?
查看答案和解析>>
科目: 來源: 題型:
【題目】假設(shè)關(guān)于某設(shè)備的使用年限x和所支出的維修費(fèi)用 y(萬元),有如下的統(tǒng)計(jì)資料:
x | 2 | 3 | 4 | 5 | 6 |
y | 2.2 | 3.8 | 5.5 | 6.5 | 7.0 |
若由資料可知y對(duì)x呈線性相關(guān)關(guān)系,且線性回歸方程為y=a+bx,其中已知b=1.23,請(qǐng)估計(jì)使用年限為20年時(shí),維修費(fèi)用約為_________
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù)f(x)=|x﹣a|﹣|x﹣5|.
(1)當(dāng)a=2時(shí),求證:﹣3≤f(x)≤3;
(2)若關(guān)于x的不等式f(x)≤x2﹣8x+20在R恒成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】在直角坐標(biāo)系xOy中,直線C1:x=﹣2以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,C2極坐標(biāo)方程為:ρ2﹣2ρcosθ﹣4ρsinθ+4=0.
(1)求C1的極坐標(biāo)方程和C2的普通方程;
(2)若直線C3的極坐標(biāo)方程為,設(shè)C2與C3的交點(diǎn)為M,N,又C1:x=﹣2與x軸交點(diǎn)為H,求△HMN的面積.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知F(0,1)為平面上一點(diǎn),H為直線l:y=﹣1上任意一點(diǎn),過點(diǎn)H作直線l的垂線m,設(shè)線段FH的中垂線與直線m交于點(diǎn)P,記點(diǎn)P的軌跡為Γ.
(1)求軌跡Γ的方程;
(2)過點(diǎn)F作互相垂直的直線AB與CD,其中直線AB與軌跡Γ交于點(diǎn)AB,直線CD與軌跡Γ交于點(diǎn)CD,設(shè)點(diǎn)M,N分別是AB和CD的中點(diǎn).
①問直線MN是否恒過定點(diǎn),如果經(jīng)過定點(diǎn),求出該定點(diǎn),否則說明理由;
②求△FMN的面積的最小值.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù)f(x)=aex﹣x,
(1)求f(x)的單調(diào)區(qū)間,
(2)若關(guān)于x不等式aex≥x+b對(duì)任意和正數(shù)b恒成立,求的最小值.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,PD⊥平面ABCD,PD=2,DC=BC=1,AB=2,AB∥DC,∠BCD=90°.
(1)求證:AD⊥PB;
(2)求A點(diǎn)到平面BPC的距離.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com