科目: 來源: 題型:
【題目】口袋中有大小、形狀、質(zhì)地相同的兩個白球和三個黑球.現(xiàn)有一抽獎游戲規(guī)則如下:抽獎?wù)呙看斡蟹呕氐膹目诖须S機取出一個球,最多取球2n+1(n)次.若取出白球的累計次數(shù)達到n+1時,則終止取球且獲獎,其它情況均不獲獎.記獲獎概率為.
(1)求;
(2)證明:.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在直三棱柱中ABC—A1B1C1,ABAC,AB=3,AC=4,B1CAC1.
(1)求AA1的長;
(2)試判斷在側(cè)棱BB1上是否存在點P,使得直線PC與平面AA1C1C所成角和二面角B—A1C—A的大小相等,并說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】若數(shù)列滿足n≥2時,,則稱數(shù)列(n)為的“L數(shù)列”.
(1)若,且的“L數(shù)列”為,求數(shù)列的通項公式;
(2)若,且的“L數(shù)列”為遞增數(shù)列,求k的取值范圍;
(3)若,其中p>1,記的“L數(shù)列”的前n項和為,試判斷是否存在等差數(shù)列,對任意n,都有成立,并證明你的結(jié)論.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù)(aR),其中e為自然對數(shù)的底數(shù).
(1)若,求函數(shù)的單調(diào)減區(qū)間;
(2)若函數(shù)的定義域為R,且,求a的取值范圍;
(3)證明:對任意,曲線上有且僅有三個不同的點,在這三點處的切線經(jīng)過坐標(biāo)原點.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,橢圓C:(a>b>0)經(jīng)過點(﹣2,0)和,橢圓C上三點A,M,B與原點O構(gòu)成一個平行四邊形AMBO.
(1)求橢圓C的方程;
(2)若點B是橢圓C左頂點,求點M的坐標(biāo);
(3)若A,M,B,O四點共圓,求直線AB的斜率.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,港口A在港口O的正東100海里處,在北偏東方向有條直線航道OD,航道和正東方向之間有一片以B為圓心,半徑為海里的圓形暗礁群(在這片海域行船有觸礁危險),其中OB=海里,tan∠AOB=,cos∠AOD=,現(xiàn)一艘科考船以海里/小時的速度從O出發(fā)沿OD方向行駛,經(jīng)過2個小時后,一艘快艇以50海里/小時的速度準(zhǔn)備從港口A出發(fā),并沿直線方向行駛與科考船恰好相遇.
(1)若快艇立即出發(fā),判斷快艇是否有觸礁的危險,并說明理由;
(2)在無觸礁危險的情況下,若快艇再等x小時出發(fā),求x的最小值.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知向量=(cosx,sinx),=(cosx,﹣sinx),函數(shù).
(1)若,x(0,),求tan(x+)的值;
(2)若,(,),,(0,),求的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在四棱錐P—ABCD中,底面ABCD為矩形,平面PAD⊥平面ABCD,PAPD,E,F分別為AD,PB的中點.求證:
(1)EF//平面PCD;
(2)平面PAB平面PCD.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知橢圓的焦距為2,過右焦點和短軸一個端點的直線的斜率為,為坐標(biāo)原點.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)斜率為的直線與橢圓相交于兩點,記面積的最大值為,證明:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com