相關(guān)習(xí)題
 0  265046  265054  265060  265064  265070  265072  265076  265082  265084  265090  265096  265100  265102  265106  265112  265114  265120  265124  265126  265130  265132  265136  265138  265140  265141  265142  265144  265145  265146  265148  265150  265154  265156  265160  265162  265166  265172  265174  265180  265184  265186  265190  265196  265202  265204  265210  265214  265216  265222  265226  265232  265240  266669 

科目: 來源: 題型:

【題目】已知橢圓的離心率為,焦距為,直線過橢圓的左焦點.

1)求橢圓的標(biāo)準(zhǔn)方程;

2)若直線軸交于點是橢圓上的兩個動點,的平分線在軸上,.試判斷直線是否過定點,若過定點,求出定點坐標(biāo);若不過定點,請說明理由.

查看答案和解析>>

科目: 來源: 題型:

【題目】2019年春節(jié)期間,我國高速公路繼續(xù)執(zhí)行節(jié)假日高速公路免費政策某路橋公司為掌握春節(jié)期間車輛出行的高峰情況,在某高速公路收費點記錄了大年初三上午9:20~10:40這一時間段內(nèi)通過的車輛數(shù),統(tǒng)計發(fā)現(xiàn)這一時間段內(nèi)共有600輛車通過該收費點,它們通過該收費點的時刻的頻率分布直方圖如下圖所示,其中時間段9:20~9:40記作區(qū)間,9:40~10:00記作,10:00~10:20記作,10:20~10:40記作.例如:1004分,記作時刻64.

1)估計這600輛車在9:20~10:40時間段內(nèi)通過該收費點的時刻的平均值(同一組中的數(shù)據(jù)用該組區(qū)間的中點值代表);

2)為了對數(shù)據(jù)進行分析,現(xiàn)采用分層抽樣的方法從這600輛車中抽取10輛,再從這10輛車中隨機抽取4輛,設(shè)抽到的4輛車中,在9:20~10:00之間通過的車輛數(shù)為X,求X的分布列與數(shù)學(xué)期望;

3)由大數(shù)據(jù)分析可知,車輛在每天通過該收費點的時刻T服從正態(tài)分布,其中可用這600輛車在9:20~10:40之間通過該收費點的時刻的平均值近似代替,可用樣本的方差近似代替(同一組中的數(shù)據(jù)用該組區(qū)間的中點值代表),已知大年初五全天共有1000輛車通過該收費點,估計在9:46~10:40之間通過的車輛數(shù)(結(jié)果保留到整數(shù)).

參考數(shù)據(jù):若,則,.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,四棱錐SABCD中,SDCDSC2AB2BC,平面ABCD⊥底面SDC,ABCD,∠ABC90°,ESD中點.

1)證明:直線AE//平面SBC

2)點F為線段AS的中點,求二面角FCDS的大。

查看答案和解析>>

科目: 來源: 題型:

【題目】2018年9月24日,阿貝爾獎和菲爾茲獎雙料得主、英國著名數(shù)學(xué)家阿蒂亞爵士宣布自己證明了黎曼猜想,這一事件引起了數(shù)學(xué)界的震動,在1859年,德國數(shù)學(xué)家黎曼向科學(xué)院提交了題目為《論小于某值的素數(shù)個數(shù)》的論文并提出了一個命題,也就是著名的黎曼猜想.在此之前,著名數(shù)學(xué)家歐拉也曾研究過這個問題,并得到小于數(shù)字的素數(shù)個數(shù)大約可以表示為的結(jié)論(素數(shù)即質(zhì)數(shù),).根據(jù)歐拉得出的結(jié)論,如下流程圖中若輸入的值為,則輸出的值應(yīng)屬于區(qū)間( )

A.B.C.D.

查看答案和解析>>

科目: 來源: 題型:

【題目】某運動制衣品牌為了成衣尺寸更精準(zhǔn),現(xiàn)選擇15名志愿者,對其身高和臂展進行測量(單位:厘米),左圖為選取的15名志愿者身高與臂展的折線圖,右圖為身高與臂展所對應(yīng)的散點圖,并求得其回歸方程為,以下結(jié)論中不正確的為

A. 15名志愿者身高的極差小于臂展的極差

B. 15名志愿者身高和臂展成正相關(guān)關(guān)系,

C. 可估計身高為190厘米的人臂展大約為189.65厘米,

D. 身高相差10厘米的兩人臂展都相差11.6厘米,

查看答案和解析>>

科目: 來源: 題型:

【題目】已知長方形ABCD中,AB1,∠ABD60°,現(xiàn)將長方形ABCD沿著對角線BD折起,使平面ABD⊥平面BCD,則折后幾何圖形的外接球表面積為_____

查看答案和解析>>

科目: 來源: 題型:

【題目】以直角坐標(biāo)系的原點為極點,軸的非負(fù)半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,直線的參數(shù)方程為為參數(shù)).

1)求曲線的參數(shù)方程與直線的普通方程;

2)設(shè)點過為曲線上的動點,點和點為直線上的點,且滿足為等邊三角形,求邊長的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù)fx)=axex,gx)=x2+2x+b,若曲線yfx)與曲線ygx)都過點P1,c).且在點P處有相同的切線l

(Ⅰ)求切線l的方程;

(Ⅱ)若關(guān)于x的不等式k[efx]≥gx)對任意x[1,+∞)恒成立,求實數(shù)k的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知O為坐標(biāo)原點,拋物線E的方程為x22pyp0),其焦點為F,過點M 0,4)的直線與拋物線相交于P、Q兩點且OPQ為以O為直角頂點的直角三角形.

(Ⅰ)求E的方程;

(Ⅱ)設(shè)點N為曲線E上的任意一點,證明:以FN為直徑的圓與x軸相切.

查看答案和解析>>

科目: 來源: 題型:

【題目】四棱錐PABCD中,ABCD,ABBCABBC1,PACD2,PA⊥平面ABCD,E在棱PB上.

(Ⅰ)求證:ACPD;

(Ⅱ)若VPACE,求證:PD∥平面AEC

查看答案和解析>>

同步練習(xí)冊答案