科目: 來源: 題型:
【題目】某互聯(lián)網(wǎng)公司為了確定下一季度的前期廣告投入計(jì)劃,收集了近個(gè)月廣告投入量(單位:萬元)和收益(單位:萬元)的數(shù)據(jù)如下表:
月份 | ||||||
廣告投入量 | ||||||
收益 |
他們分別用兩種模型①,②分別進(jìn)行擬合,得到相應(yīng)的回歸方程并進(jìn)行殘差分析,得到如圖所示的殘差圖及一些統(tǒng)計(jì)量的值:
(Ⅰ)根據(jù)殘差圖,比較模型①,②的擬合效果,應(yīng)選擇哪個(gè)模型?并說明理由;
(Ⅱ)殘差絕對值大于的數(shù)據(jù)被認(rèn)為是異常數(shù)據(jù),需要剔除:
(ⅰ)剔除異常數(shù)據(jù)后求出(Ⅰ)中所選模型的回歸方程
(ⅱ)若廣告投入量時(shí),該模型收益的預(yù)報(bào)值是多少?
附:對于一組數(shù)據(jù),,……,,其回歸直線的斜率和截距的最小二乘估計(jì)分別為:
,.
查看答案和解析>>
科目: 來源: 題型:
【題目】通過隨機(jī)詢問110名性別不同的大學(xué)生是否愛好某項(xiàng)運(yùn)動,得到如下的列聯(lián)表:
男 | 女 | 合計(jì) | |
愛好 | 40 | 20 | 60 |
不愛好 | 20 | 30 | 50 |
合計(jì) | 60 | 50 | 110 |
由K2=,
附表:
P(K2≥k0) | 0.050 | 0.010 | 0.001 |
k0 | 3.841 | 6.635 | 10.828 |
參照附表,得到的正確結(jié)論是( )
A.在犯錯誤的概率不超過0.1%的前提下,認(rèn)為“愛好該項(xiàng)運(yùn)動與性別有關(guān)”
B.在犯錯誤的概率不超過0.1%的前提下,認(rèn)為“愛好該項(xiàng)運(yùn)動與性別無關(guān)”
C.有99%以上的把握認(rèn)為“愛好該項(xiàng)運(yùn)動與性別有關(guān)”
D.有99%以上的把握認(rèn)為“愛好該項(xiàng)運(yùn)動與性別無關(guān)”
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù),且.
(1)求實(shí)數(shù)的值;
(2)判斷函數(shù)在區(qū)間上的單調(diào)性,并用函數(shù)單調(diào)性的定義證明;
(3)求實(shí)數(shù)的取值范圍,使得關(guān)于的方程分別為:
①有且僅有一個(gè)實(shí)數(shù)解;②有兩個(gè)不同的實(shí)數(shù)解;③有三個(gè)不同的實(shí)數(shù)解.
查看答案和解析>>
科目: 來源: 題型:
【題目】設(shè)等差數(shù)列的前項(xiàng)和為,且,.?dāng)?shù)列的前項(xiàng)和為,滿足.
(1)求數(shù)列的通項(xiàng)公式;
(2)寫出一個(gè)正整數(shù),使得是數(shù)列的項(xiàng);
(3)設(shè)數(shù)列的通項(xiàng)公式為,問:是否存在正整數(shù)和,使得,,成等差數(shù)列?若存在,請求出所有符合條件的有序整數(shù)對;若不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知A(4,0)、B(1,0),動點(diǎn)M滿足|AM|=2|BM|.
(1)求動點(diǎn)M的軌跡C的方程;
(2)直線l:x+y=4,點(diǎn)N∈l,過N作軌跡C的切線,切點(diǎn)為T,求NT取最小時(shí)的切線方程.
查看答案和解析>>
科目: 來源: 題型:
【題目】設(shè)定義在上的函數(shù)滿足:對任意的,當(dāng)時(shí),都有.
(1)若,求實(shí)數(shù)的取值范圍;
(2)若為周期函數(shù),證明:是常值函數(shù);
(3)若在上滿足:,,,
①記(),求數(shù)列的通項(xiàng)公式;② 求的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù)(),數(shù)列滿足,,數(shù)列滿足.
(1)求證:數(shù)列是等差數(shù)列;
(2)設(shè)數(shù)列滿足(),且中任意連續(xù)三項(xiàng)均能構(gòu)成一個(gè)三角形的三邊長,求的取值范圍;
(3)設(shè)數(shù)列滿足(),求的前項(xiàng)和.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知A(4,0)、B(1,0),動點(diǎn)M滿足|AM|=2|BM|.
(1)求動點(diǎn)M的軌跡C的方程;
(2)直線l:x+y=4,點(diǎn)N∈l,過N作軌跡C的切線,切點(diǎn)為T,求NT取最小時(shí)的切線方程.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知動點(diǎn)M到定點(diǎn)F1(-2,0)和F2(2,0)的距離之和為.
(1)求動點(diǎn)M的軌跡C的方程;
(2)設(shè)N(0,2),過點(diǎn)P(-1,-2)作直線l,交曲線C于不同于N的兩點(diǎn)A,B,直線NA,NB的斜率分別為k1,k2,求k1+k2的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com