科目: 來源: 題型:
【題目】已知函數(shù).
1當(dāng)時,求曲線在處的切線方程;
2若是R上的單調(diào)遞增函數(shù),求a的取值范圍;
3若函數(shù)對任意的實數(shù),存在唯一的實數(shù),使得成立,求a的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知關(guān)于x,y的方程x2+y2﹣4x+4y+m=0表示一個圓.
(1)求實數(shù)m的取值范圍;
(2)若m=4,過點P(0,2)的直線l與圓相切,求出直線l的方程.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在三棱柱中,底面ABC,是邊長為2的正三角形,,E,F分別為BC,的中點.
1求證:平面平面;
2求三棱錐的體積;
3在線段上是否存在一點M,使直線MF與平面沒有公共點?若存在,求的值;若不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】北京地鐵八通線西起四惠站,東至土橋站,全長,共設(shè)13座車站目前八通線執(zhí)行2014年12月28日制訂的計價標(biāo)準(zhǔn),各站間計程票價單位:元如下:
四惠 | 3 | 3 | 3 | 3 | 4 | 4 | 4 | 5 | 5 | 5 | 5 | 5 | |
四惠東 | 3 | 3 | 3 | 4 | 4 | 4 | 5 | 5 | 5 | 5 | 5 | ||
高碑店 | 3 | span>3 | 3 | 4 | 4 | 4 | 4 | 5 | 5 | 5 | |||
傳媒大學(xué) | 3 | 3 | 3 | 4 | 4 | 4 | 4 | 5 | 5 | ||||
雙橋 | 3 | 3 | 3 | 4 | 4 | 4 | 4 | 4 | |||||
管莊 | 3 | 3 | 3 | 3 | 4 | 4 | 4 | ||||||
八里橋 | 3 | 3 | 3 | 3 | 4 | 4 | |||||||
通州北苑 | 3 | 3 | 3 | 3 | 3 | ||||||||
果園 | 3 | 3 | 3 | 3 | |||||||||
九棵樹 | 3 | 3 | 3 | ||||||||||
梨園 | 3 | 3 | |||||||||||
臨河里 | 3 | ||||||||||||
土橋 | |||||||||||||
四惠 | 四惠東 | 高碑店 | 傳媒大學(xué) | 雙橋 | 管莊 | 八里橋 | 通州北苑 | 果園 | 九棵樹 | 梨園 | 臨河里 | 土橋 |
1在13座車站中任選兩個不同的車站,求兩站間票價為5元的概率;
2在土橋出站口隨機調(diào)查了n名下車的乘客,將在八通線各站上車情況統(tǒng)計如下表:
上車站點 | 通州北苑果園九棵樹 梨園臨河里 | 雙橋管莊八里橋 | 四惠四惠東高碑店 傳媒大學(xué) |
頻率 | a | b | |
人數(shù) | c | 15 | 25 |
求a,b,c,n的值,并計算這n名乘客乘車平均消費金額;
3某人從四惠站上車乘坐八通線到土橋站,中途任選一站出站一次,之后再從該站乘車若想兩次乘車花費總金額最少,可以選擇中途哪站下車?寫出一個即可
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在長方形ABCD中,AB=2,BC=1,E為DC的中點,F為線段EC(端點除外)上一動點,現(xiàn)將△AFD沿AF折起,使平面ABD⊥平面ABC,則二面角D﹣AF﹣B的平面角余弦值的取值范圍是_____.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知三棱錐A﹣BCD的所有棱長均相等,E為DC的中點,若點P為AC中點,則直線PE與平面BCD所成角的正弦值為_____,若點Q在棱AC所在直線上運動,則直線QE與平面BCD所成角正弦值的最大值為_____.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知橢圓:過點,且橢圓的離心率為.
(Ⅰ)求橢圓的方程;
(Ⅱ)斜率為的直線交橢圓于,兩點,且.若直線上存在點P,使得是以為頂角的等腰直角三角形,求直線的方程.
查看答案和解析>>
科目: 來源: 題型:
【題目】在平面直角坐標(biāo)系中,當(dāng)P(x,y)不是原點時,定義P的“伴隨點”為;
當(dāng)P是原點時,定義P的“伴隨點“為它自身,平面曲線C上所有點的“伴隨點”所構(gòu)成的曲線定義為曲線C的“伴隨曲線”.現(xiàn)有下列命題:
①若點A的“伴隨點”是點,則點的“伴隨點”是點A
②單位圓的“伴隨曲線”是它自身;
③若曲線C關(guān)于x軸對稱,則其“伴隨曲線”關(guān)于y軸對稱;
④一條直線的“伴隨曲線”是一條直線.
其中的真命題是_____________(寫出所有真命題的序列).
查看答案和解析>>
科目: 來源: 題型:
【題目】已知過點的動直線與圓:相交于、兩點,是中點,與直線:(為常數(shù))相交于點.
(1)求證:當(dāng)與垂直時,必過圓心;
(2)當(dāng)時,求直線的方程;
(3)當(dāng)直線的傾斜角變化時,探索的值是否為常數(shù)?若是,求出該常數(shù);若不是,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】在平行四邊形中,,,.
(1)求點的坐標(biāo);
(2)過點的直線與平行四邊形圍成的區(qū)域(包括邊界)有公共點,求直線的傾斜角的取值范圍;
(3)對角線所在的直線與圓:沒有交點,求實數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com