相關(guān)習(xí)題
 0  263066  263074  263080  263084  263090  263092  263096  263102  263104  263110  263116  263120  263122  263126  263132  263134  263140  263144  263146  263150  263152  263156  263158  263160  263161  263162  263164  263165  263166  263168  263170  263174  263176  263180  263182  263186  263192  263194  263200  263204  263206  263210  263216  263222  263224  263230  263234  263236  263242  263246  263252  263260  266669 

科目: 來源: 題型:

【題目】函數(shù)f(x)Asin(ωxφ) 的部分圖象如圖所示.

1)求函數(shù)yf(x)的解析式;

2)求f(x)的單調(diào)減區(qū)間

3)當(dāng)時,求f(x)的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知的三個頂點(diǎn),,,其外接圓為圓H.

求圓H的標(biāo)準(zhǔn)方程;

若直線l過點(diǎn)C,且被圓H截得的弦長為2,求直線l的方程.

查看答案和解析>>

科目: 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知直線的參數(shù)方程為為參數(shù)).在以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸,且與直角坐標(biāo)系長度單位相同的極坐標(biāo)系中,曲線的極坐標(biāo)方程是.

(1)求直線的普通方程與曲線的直角坐標(biāo)方程;

(2)設(shè)點(diǎn).若直與曲線相交于兩點(diǎn),求的值.

查看答案和解析>>

科目: 來源: 題型:

【題目】在銳角三角形中,分別為內(nèi)角所對的邊,且滿足.

1)求角的大;

2)若,且,求的值.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知圓和點(diǎn).

1)過點(diǎn)向圓引切線,求切線的方程;

2)求以點(diǎn)為圓心,且被直線截得的弦長為8的圓的方程;

3)設(shè)為(2)中圓上任意一點(diǎn),過點(diǎn)向圓引切線,切點(diǎn)為,試探究:平面內(nèi)是否存在一定點(diǎn),使得為定值?若存在,請求出定點(diǎn)的坐標(biāo),并指出相應(yīng)的定值;若不存在,請說明理由.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,在四棱錐中,,,且PC=BC=2AD=2CD=2.

(1)平面;

(2)已知點(diǎn)在線段上,且,求點(diǎn)到平面的距離.

查看答案和解析>>

科目: 來源: 題型:

【題目】根據(jù)國際海洋安全規(guī)定:兩國軍艦正常狀況下(聯(lián)合軍演除外),在公海上的安全距離為20(即距離不得小于20),否則違反了國際海洋安全規(guī)定.如圖,在某公海區(qū)域有兩條相交成60°的直航線,,交點(diǎn)是,現(xiàn)有兩國的軍艦甲,乙分別在,上的,處,起初,后來軍艦甲沿的方向,乙軍艦沿的方向,同時以40的速度航行.

1)起初兩軍艦的距離為多少?

2)試判斷這兩艘軍艦是否會違反國際海洋安全規(guī)定?并說明理由.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù).

(1)試討論函數(shù)的導(dǎo)函數(shù)的零點(diǎn)個數(shù);

(2)若對任意的,關(guān)于的不等式恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】為發(fā)揮體育在核心素養(yǎng)時代的獨(dú)特育人價值,越來越多的中學(xué)已將某些體育項(xiàng)目納入到學(xué)生的必修課程,甚至關(guān)系到是否能拿到畢業(yè)證.某中學(xué)計劃在高一年級開設(shè)游泳課程,為了解學(xué)生對游泳的興趣,某數(shù)學(xué)研究性學(xué)習(xí)小組隨機(jī)從該校高一年級學(xué)生中抽取了100人進(jìn)行調(diào)查,其中男生60人,且抽取的男生中對游泳有興趣的占,而抽取的女生中有15人表示對游泳沒有興趣.

(1)試完成下面的列聯(lián)表,并判斷能否有的把握認(rèn)為“對游泳是否有興趣與性別有關(guān)”?

有興趣

沒興趣

合計

男生

女生

合計

(2)已知在被抽取的女生中有6名高一(1)班的學(xué)生,其中3名對游泳有興趣,現(xiàn)在從這6名學(xué)生中隨機(jī)抽取3人,求至少有2人對游泳有興趣的概率.

(3)該研究性學(xué)習(xí)小組在調(diào)查中發(fā)現(xiàn),對游泳有興趣的學(xué)生中有部分曾在市級和市級以上游泳比賽中獲獎,如下表所示.若從高一(8)班和高一(9)班獲獎學(xué)生中各隨機(jī)選取2人進(jìn)行跟蹤調(diào)查,記選中的4人中市級以上游泳比賽獲獎的人數(shù)為,求隨機(jī)變量的分布列及數(shù)學(xué)期望.

班級

市級比賽

獲獎人數(shù)

2

2

3

3

4

4

3

3

4

2

市級以上比賽獲獎人數(shù)

2

2

1

0

2

3

3

2

1

2

0.500

0.400

0.250

0.150

0.100

0.050

0.025

0.010

0.005

0.001

0.455

0.708

1.323

2.072

2.706

3.841

5.024

6.635

7.879

10.828

.

查看答案和解析>>

科目: 來源: 題型:

【題目】(本小題10分)選修4—4:坐標(biāo)系與參數(shù)方程

已知曲線C1的參數(shù)方程為t為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為ρ=2sinθ。

)把C1的參數(shù)方程化為極坐標(biāo)方程;

)求C1C2交點(diǎn)的極坐標(biāo)(ρ≥0,0≤θ

查看答案和解析>>

同步練習(xí)冊答案