科目: 來源: 題型:
【題目】某班共有學(xué)生45人,其中女生18人,現(xiàn)用分層抽樣的方法,從男、女學(xué)生中各抽取若干學(xué)生進(jìn)行演講比賽,有關(guān)數(shù)據(jù)見下表(單位:人)
性別 | 學(xué)生人數(shù) | 抽取人數(shù) |
女生 | 18 | |
男生 | 3 |
(1)求和;
(2)若從抽取的學(xué)生中再選2人做專題演講,求這2人都是男生的概率.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在正方體ABCD﹣A1B1C1D1中,E,F,G分別是AB,CC1,AD的中點(diǎn).
(1)求異面直線EG與B1C所成角的大。
(2)棱CD上是否存在點(diǎn)T,使AT∥平面B1EF?若存在,求出的值;若不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】中央政府為了應(yīng)對因人口老齡化而造成的勞動(dòng)力短缺等問題,擬定出臺“延遲退休年齡政策”.為了了解人們]對“延遲退休年齡政策”的態(tài)度,責(zé)成人社部進(jìn)行調(diào)研.人社部從網(wǎng)上年齡在15∽65歲的人群中隨機(jī)調(diào)查100人,調(diào)査數(shù)據(jù)的頻率分布直方圖和支持“延遲退休”的人數(shù)與年齡的統(tǒng)計(jì)結(jié)果如下:
年齡 | |||||
支持“延遲退休”的人數(shù) | 15 | 5 | 15 | 28 | 17 |
(1)由以上統(tǒng)計(jì)數(shù)據(jù)填列聯(lián)表,并判斷能否在犯錯(cuò)誤的概率不超過0.05的前提下認(rèn)為以45歲為分界點(diǎn)的不同人群對“延遲退休年齡政策”的支持度有差異;
45歲以下 | 45歲以上 | 總計(jì) | |
支持 | |||
不支持 | |||
總計(jì) |
(2)若以45歲為分界點(diǎn),從不支持“延遲退休”的人中按分層抽樣的方法抽取8人參加某項(xiàng)活動(dòng).現(xiàn)從這8人中隨機(jī)抽2人
①抽到1人是45歲以下時(shí),求抽到的另一人是45歲以上的概率.
②記抽到45歲以上的人數(shù)為,求隨機(jī)變量的分布列及數(shù)學(xué)期望.
參考數(shù)據(jù):
0.100 | 0.050 | 0.010 | 0.001 | |
2.706 | 3.841 | 6.635 | 10.828 |
,其中
查看答案和解析>>
科目: 來源: 題型:
【題目】設(shè)α,β為兩個(gè)不同平面,a,b為兩條不同直線,下列選項(xiàng)正確的是( 。
①若a∥α,b∥α,則a∥b
②若aα,α∥β,則a∥β
③若α∥β,a∥β,則
④若a∥α,則a與平面α內(nèi)的無數(shù)條直線平行
⑤若a∥b,則a平行于經(jīng)過b的所有平面
A.①②B.③④C.②④D.②⑤
查看答案和解析>>
科目: 來源: 題型:
【題目】已知下列命題:
①命題“”的否定是“”;
②已知為兩個(gè)命題,若為假命題,則為真命題;
③“”是“”的充分不必要條件;
④“若則且”的逆否命題為真命題.
其中 真命題的序號是__________.(寫出所有滿足題意的序號)
查看答案和解析>>
科目: 來源: 題型:
【題目】第23屆冬季奧運(yùn)會于2018年2月9日至2月25日在韓國平昌舉行,期間正值我市學(xué)校放寒假,寒假結(jié)束后,某校工會對全校教職工在冬季奧運(yùn)會期間每天收看比賽轉(zhuǎn)播的時(shí)間作了一次調(diào)查,得到如下頻數(shù)分布表:
(1)若講每天收看比賽轉(zhuǎn)播時(shí)間不低于3小時(shí)的教職工定義為“體育達(dá)人”,否則定義為“非體育達(dá)人”,請根據(jù)頻數(shù)分布表補(bǔ)全列聯(lián)表:
并判斷能否有90%的把握認(rèn)為該校教職工是否為“體育達(dá)人”與“性別”有關(guān);
(2)在全!绑w育達(dá)人”中按性別分層抽樣抽取6名,再從這6名“體育達(dá)人”中選取2名作冬奧會知識講座.記其中女職工的人數(shù)為,求的分布列與數(shù)學(xué)期望.
附表及公式:
.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)求的單調(diào)區(qū)間;
(Ⅱ)求在區(qū)間上的最小值.
【答案】(Ⅰ);(Ⅱ).
【解析】(Ⅰ).
令,得.
與的情況如上:
所以,的單調(diào)遞減區(qū)間是,單調(diào)遞增區(qū)間是.
(Ⅱ)當(dāng),即時(shí),函數(shù)在上單調(diào)遞增,
所以在區(qū)間上的最小值為.
當(dāng),即時(shí),
由(Ⅰ)知在上單調(diào)遞減,在上單調(diào)遞增,
所以在區(qū)間上的最小值為.
當(dāng),即時(shí),函數(shù)在上單調(diào)遞減,
所以在區(qū)間上的最小值為.
綜上,當(dāng)時(shí),的最小值為;
當(dāng)時(shí),的最小值為;
當(dāng)時(shí),的最小值為.
【題型】解答題
【結(jié)束】
19
【題目】已知拋物線的頂點(diǎn)在原點(diǎn),焦點(diǎn)在坐標(biāo)軸上,點(diǎn)為拋物線上一點(diǎn).
(1)求的方程;
(2)若點(diǎn)在上,過作的兩弦與,若,求證: 直線過定點(diǎn).
查看答案和解析>>
科目: 來源: 題型:
【題目】四棱錐中,底面是邊長為的菱形,側(cè)面底面,, , 是中點(diǎn),點(diǎn)在側(cè)棱上.
(Ⅰ)求證: ;
(Ⅱ)若是中點(diǎn),求二面角的余弦值;
(Ⅲ)是否存在,使平面?若存在,求出的值;若不存在,說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】定義:若函數(shù)的定義域?yàn)?/span>,且存在非零常數(shù),對任意 , 恒成立,則稱為線周期函數(shù), 為的線周期.
(1)下列函數(shù)①,②,③(其中表示不超過x的最大整數(shù)),是線周期函數(shù)的是 (直接填寫序號);
(2)若為線周期函數(shù),其線周期為,求證: 為周期函數(shù);
(3)若為線周期函數(shù),求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com