科目: 來源: 題型:
【題目】函數(shù)和都不是常值函數(shù)且定義域為R,則“和同是奇函數(shù)或同是偶函數(shù)”是“和的積是偶函數(shù)”的_______________條件.
查看答案和解析>>
科目: 來源: 題型:
【題目】“大眾創(chuàng)業(yè),萬眾創(chuàng)新”是李克強(qiáng)總理在本屆政府工作報告中向全國人民發(fā)出的口號.某生產(chǎn)企業(yè)積極響應(yīng)號召,大力研發(fā)新產(chǎn)品,為了對新研發(fā)的一批產(chǎn)品進(jìn)行合理定價,將該產(chǎn)品按事先擬定的價格進(jìn)行試銷,得到一組銷售數(shù)據(jù),如表所示:
試銷單價(元) | 4 | 5 | 6 | 7 | 8 | 9 |
產(chǎn)品銷量(件) | 84 | 83 | 80 | 75 | 68 |
已知.
(1)求出的值;
(2)已知變量具有線性相關(guān)關(guān)系,求產(chǎn)品銷量(件)關(guān)于試銷單價(元)的線性回歸方程;可供選擇的數(shù)據(jù):,;
(3)用表示用(2)中所求的線性回歸方程得到的與對應(yīng)的產(chǎn)品銷量的估計值.當(dāng)銷售數(shù)據(jù)對應(yīng)的殘差的絕對值時,則將銷售數(shù)據(jù)稱為一個“好數(shù)據(jù)”.現(xiàn)從6個銷售數(shù)據(jù)中任取3個,求“好數(shù)據(jù)”個數(shù)的分布列和數(shù)學(xué)期望.
(參考公式:線性回歸方程中的最小二乘估計分別為,)
查看答案和解析>>
科目: 來源: 題型:
【題目】(本小題滿分13分)
某產(chǎn)品按行業(yè)生產(chǎn)標(biāo)準(zhǔn)分成8個等級,等級系數(shù)X依次為1,2,……,8,其中X≥5為標(biāo)準(zhǔn)A,X≥3為標(biāo)準(zhǔn)B,已知甲廠執(zhí)行標(biāo)準(zhǔn)A生產(chǎn)該產(chǎn)品,產(chǎn)品的零售價為6元/件;乙廠執(zhí)行標(biāo)準(zhǔn)B生產(chǎn)該產(chǎn)品,產(chǎn)品的零售價為4元/件,假定甲、乙兩廠得產(chǎn)品都符合相應(yīng)的執(zhí)行標(biāo)準(zhǔn)
(I)已知甲廠產(chǎn)品的等級系數(shù)X1的概率分布列如下所示:
且X1的數(shù)字期望EX1=6,求a,b的值;
(II)為分析乙廠產(chǎn)品的等級系數(shù)X2,從該廠生產(chǎn)的產(chǎn)品中隨機(jī)抽取30件,相應(yīng)的等級系數(shù)組成一個樣本,數(shù)據(jù)如下:
3 5 3 3 8 5 5 6 3 4
6 3 4 7 5 3 4 8 5 3
8 3 4 3 4 4 7 5 6 7
用這個樣本的頻率分布估計總體分布,將頻率視為概率,求等級系數(shù)X2的數(shù)學(xué)期望.
在(I)、(II)的條件下,若以“性價比”為判斷標(biāo)準(zhǔn),則哪個工廠的產(chǎn)品更具可購買性?說明理由.
注:(1)產(chǎn)品的“性價比”=;
(2)“性價比”大的產(chǎn)品更具可購買性.
查看答案和解析>>
科目: 來源: 題型:
【題目】某校高三文科名學(xué)生參加了月份的高考模擬考試,學(xué)校為了了解高三文科學(xué)生的歷史、地理學(xué)習(xí)情況,從名學(xué)生中抽取名學(xué)生的成績進(jìn)行統(tǒng)計分析,抽出的名學(xué)生的地理、歷史成績?nèi)缦卤恚?/span>
地理 歷史 | [80,100] | [60,80) | [40,60) |
[80,100] | 8 | m | 9 |
[60,80) | 9 | n | 9 |
[40,60) | 8 | 15 | 7 |
若歷史成績在[80,100]區(qū)間的占30%,
(1)求的值;
(2)請根據(jù)上面抽出的名學(xué)生地理、歷史成績,填寫下面地理、歷史成績的頻數(shù)分布表:
[80,100] | [60,80) | [40,60) | |
地理 | |||
歷史 |
根據(jù)頻數(shù)分布表中的數(shù)據(jù)估計歷史和地理的平均成績及方差(同一組數(shù)據(jù)用該組區(qū)間的中點值作代表),并估計哪個學(xué)科成績更穩(wěn)定.
查看答案和解析>>
科目: 來源: 題型:
【題目】某商場舉行有獎促銷活動,顧客購買一定金額商品后即可抽獎,每次抽獎都從裝有4個紅球、6個白球的甲箱和裝有5個紅球、5個白球的乙箱中,各隨機(jī)摸出1個球,在摸出的2個球中,若都是紅球,則獲一等獎;若只有1個紅球,則獲二等獎;若沒有紅球,則不獲獎.
(1)求顧客抽獎1次能獲獎的概率;
(2)若某顧客有3次抽獎機(jī)會,記該顧客在3次抽獎中獲一等獎的次數(shù)為,求的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目: 來源: 題型:
【題目】某位同學(xué)進(jìn)行寒假社會實踐活動,為了對白天平均氣溫與某奶茶店的某種飲料銷量之間的關(guān)系進(jìn)行分析研究,他分別記錄了1月11日至1月15日的白天平均氣溫與該小賣部的這種飲料銷量(杯),得到如下數(shù)據(jù):
日期 | 1月11日 | 1月12日 | 1月13日 | 1月14日 | 1月15日 |
平均氣溫 | 9 | 10 | 12 | 11 | 8 |
銷量(杯) | 23 | 25 | 30 | 26 | 21 |
(1)若先從這五組數(shù)據(jù)中抽出2組,求抽出的2組數(shù)據(jù)恰好是相鄰2天數(shù)據(jù)的概率;
(2)請根據(jù)所給五組數(shù)據(jù),求出關(guān)于的線性回歸方程;
(3)根據(jù)(1)中所得的線性回歸方程,若天氣預(yù)報1月16日的白天平均氣溫,請預(yù)測該奶茶店這種飲料的銷量.
(參考公式:,)
查看答案和解析>>
科目: 來源: 題型:
【題目】某企業(yè)甲,乙兩個研發(fā)小組,他們研發(fā)新產(chǎn)品成功的概率分別為和,現(xiàn)安排甲組研發(fā)新產(chǎn)品,乙組研發(fā)新產(chǎn)品.設(shè)甲,乙兩組的研發(fā)是相互獨立的.
(1)求至少有一種新產(chǎn)品研發(fā)成功的概率;
(2)若新產(chǎn)品研發(fā)成功,預(yù)計企業(yè)可獲得萬元,若新產(chǎn)品研發(fā)成功,預(yù)計企業(yè)可獲得利潤萬元,求該企業(yè)可獲得利潤的分布列和數(shù)學(xué)期望.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com