科目: 來源: 題型:
【題目】為提高產(chǎn)品質(zhì)量,某企業(yè)質(zhì)量管理部門經(jīng)常不定期地抽查產(chǎn)品進行檢測,現(xiàn)在某條生產(chǎn)線上隨機抽取100個產(chǎn)品進行相關(guān)數(shù)據(jù)的對比,并對每個產(chǎn)品進行綜合評分(滿分100分),將每個產(chǎn)品所得的綜合評分制成如圖所示的頻率分布直方圖.記綜合評分為80分及以上的產(chǎn)品為一等品.
(1)求圖中的值;
(2)求綜合評分的中位數(shù);
(3)用樣本估計總體,以頻率作為概率,按分層抽樣的思想,先在該條生產(chǎn)線中隨機抽取5個產(chǎn)品,再從這5個產(chǎn)品中隨機抽取2個產(chǎn)品記錄有關(guān)數(shù)據(jù),求這2個產(chǎn)品中至多有一個一等品的概率.
查看答案和解析>>
科目: 來源: 題型:
【題目】某港口的水深(米)是時間(,單位:小時)的函數(shù),下面是每天時間與水深的關(guān)系表:
經(jīng)過長期觀測,可近似的看成是函數(shù)
(1)根據(jù)以上數(shù)據(jù),求出的解析式;
(2)若船舶航行時,水深至少要米才是安全的,那么船舶在一天中的哪幾段時間可以安全的進出該港?
查看答案和解析>>
科目: 來源: 題型:
【題目】已知直線: , : ,動點分別在直線, 上移動, , 是線段的中點.
(1)求點的軌跡的方程;
(2)設(shè)不經(jīng)過坐標原點且斜率為的直線交軌跡于點,點滿足,若點在軌跡上,求四邊形的面積.
查看答案和解析>>
科目: 來源: 題型:
【題目】某市有兩家共享單車公司,在市場上分別投放了黃、藍兩種顏色的單車,已知黃、藍兩種顏色的單車的投放比例為2:1.監(jiān)管部門為了了解兩種顏色的單車的質(zhì)量,決定從市場中隨機抽取5輛單車進行體驗,若每輛單車被抽取的可能性相同.
(1)求抽取的5輛單車中有2輛是藍色顏色單車的概率;
(2)在騎行體驗過程中,發(fā)現(xiàn)藍色單車存在一定質(zhì)量問題,監(jiān)管部門決定從市場中隨機地抽取一輛送技術(shù)部門作進一步抽樣檢測,并規(guī)定若抽到的是藍色單車,則抽樣結(jié)束,若抽取的是黃色單車,則將其放回市場中,并繼續(xù)從市場中隨機地抽取下一輛單車,并規(guī)定抽樣的次數(shù)最多不超過()次.在抽樣結(jié)束時,已取到的黃色單車以表示,求的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目: 來源: 題型:
【題目】為了增強高考與高中學(xué)習(xí)的關(guān)聯(lián)度,考生總成績由統(tǒng)一高考的語文、數(shù)學(xué)、外語3個科目成績和高中學(xué)業(yè)水平考試3個科目成績組成.保持統(tǒng)一高考的語文、數(shù)學(xué)、外語科目不變,分值不變,不分文理科,外語科目提供兩次考試機會.計入總成績的高中學(xué)業(yè)水平考試科目,由考生根據(jù)報考高校要求和自身特長,在思想政治、歷史、地理、物理、化學(xué)、生物、信息技術(shù)七科目中自主選擇三科.
(1)某高校某專業(yè)要求選考科目物理,考生若要報考該校該專業(yè),則有多少種選考科目的選擇;
(2)甲、乙、丙三名同學(xué)都選擇了物理、化學(xué)、歷史組合,各學(xué)科成績達到二級的概率都是0.8,且三人約定如果達到二級不參加第二次考試,達不到二級參加第二次考試,如果設(shè)甲、乙、丙參加第二次考試的總次數(shù)為,求的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,已知是半圓的直徑,,是將半圓圓周四等分的三個分點.
(1)從這5個點中任取3個點,求這3個點組成直角三角形的概率;
(2)在半圓內(nèi)任取一點,求的面積大于的概率.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,點,點是單位圓與軸的正半軸的交點.
(1)若,求.
(2)已知,,若是等邊三角形,求的面積.
(3)設(shè)點為單位圓上的動點,點滿足,,,求的取值范圍.當時,求四邊形的面積.
查看答案和解析>>
科目: 來源: 題型:
【題目】《中國詩詞大會》(第二季)亮點頗多,十場比賽每場都有一首特別設(shè)計的開場詩詞,在聲光舞美的配合下,百人團齊聲朗誦,別有韻味.若《將進酒》《山居秋暝》《望岳》《送杜少府之任蜀州》和另確定的兩首詩詞排在后六場,且《將進酒》排在《望岳》的前面,《山居秋暝》與《送杜少府之任蜀州》不相鄰且均不排在最后,則后六場的排法有( )
A. 種 B. 種 C. 種 D. 種
查看答案和解析>>
科目: 來源: 題型:
【題目】學(xué)習(xí)雷鋒精神前半年內(nèi)某單位餐廳的固定餐椅經(jīng)常有損壞,學(xué)習(xí)雷鋒精神時全修好;單位對學(xué)習(xí)雷鋒精神前后各半年內(nèi)餐椅的損壞情況作了一個大致統(tǒng)計,具體數(shù)據(jù)如下:
損壞餐椅數(shù) | 未損壞餐椅數(shù) | 總 計 | |
學(xué)習(xí)雷鋒精神前 | 50 | 150 | 200 |
學(xué)習(xí)雷鋒精神后 | 30 | 170 | 200 |
總 計 | 80 | 320 | 400 |
(1)求:學(xué)習(xí)雷鋒精神前后餐椅損壞的百分比分別是多少?并初步判斷損毀餐椅數(shù)量與學(xué)習(xí)雷鋒精神是否有關(guān)?
(2)請說明是否有97.5%以上的把握認為損毀餐椅數(shù)量與學(xué)習(xí)雷鋒精神有關(guān)?
參考公式: ,
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com