相關(guān)習(xí)題
 0  261695  261703  261709  261713  261719  261721  261725  261731  261733  261739  261745  261749  261751  261755  261761  261763  261769  261773  261775  261779  261781  261785  261787  261789  261790  261791  261793  261794  261795  261797  261799  261803  261805  261809  261811  261815  261821  261823  261829  261833  261835  261839  261845  261851  261853  261859  261863  261865  261871  261875  261881  261889  266669 

科目: 來源: 題型:

【題目】如圖,直三棱柱中,,,分別為的中點(diǎn).

1)證明:平面;

2)已知與平面所成的角為30°,求二面角的余弦值.

查看答案和解析>>

科目: 來源: 題型:

【題目】設(shè),動(dòng)圓C經(jīng)過點(diǎn),且被y軸截得的弦長(zhǎng)為2p,記動(dòng)圓圓心C的軌跡為E

求軌跡E的方程;

求證:在軌跡E上存在點(diǎn)A,B,使得為坐標(biāo)原點(diǎn)是以A為直角頂點(diǎn)的等腰直角三角形.

查看答案和解析>>

科目: 來源: 題型:

【題目】某商店銷售某海鮮,統(tǒng)計(jì)了春節(jié)前后50天該海鮮的需求量,單位:公斤),其頻率分布直方圖如圖所示,該海鮮每天進(jìn)貨1次,商店每銷售1公斤可獲利50元;若供大于求,剩余的削價(jià)處理,每處理1公斤虧損10元;若供不應(yīng)求,可從其它商店調(diào)撥,銷售1公斤可獲利30元.假設(shè)商店每天該海鮮的進(jìn)貨量為14公斤,商店的日利潤(rùn)為元.

(1)求商店日利潤(rùn)關(guān)于需求量的函數(shù)表達(dá)式;

(2)假設(shè)同組中的每個(gè)數(shù)據(jù)用該組區(qū)間的中點(diǎn)值代替.

①求這50天商店銷售該海鮮日利潤(rùn)的平均數(shù);

②估計(jì)日利潤(rùn)在區(qū)間內(nèi)的概率.

查看答案和解析>>

科目: 來源: 題型:

【題目】環(huán)保部門研究發(fā)現(xiàn)某地的PM10濃度與車流量之間有線性相關(guān)關(guān)系現(xiàn)采集到該地一周內(nèi)車流量xPM10濃度y的數(shù)據(jù)如表:

時(shí)間

車流量單位:萬輛

PM10濃度單位:

星期一

星期二

星期三

星期四

星期五

星期六

星期日

在如圖所示的坐標(biāo)系中作出表中數(shù)據(jù)的散點(diǎn)圖;

根據(jù)表中統(tǒng)計(jì)數(shù)據(jù),求出線性回歸方程計(jì)算b時(shí)精確到,計(jì)算a時(shí)精確到;

為凈化空氣,該地決定下周起在工作日星期一至星期五限號(hào)假設(shè)限號(hào)時(shí)每個(gè)工作日的車流量為表中對(duì)應(yīng)工作日的,試預(yù)測(cè)下周星期三的PM10濃度精確到

參考公式:

參考數(shù)據(jù),,

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,在直三棱柱ABC-A1B1C1中,D,E分別為AB,BC的中點(diǎn),點(diǎn)F在側(cè)棱B1B上,且, .

求證:(1)直線DE平面A1C1F;

2)平面B1DE⊥平面A1C1F.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知點(diǎn),,在圓E上,過點(diǎn)的直線l與圓E相切.

求圓E的方程;

求直線l的方程.

查看答案和解析>>

科目: 來源: 題型:

【題目】某理科考生參加自主招生面試,從7道題中(4道理科題3道文科題)不放回地依次任取3道作答.

1)求該考生在第一次抽到理科題的條件下,第二次和第三次均抽到文科題的概率;

2)規(guī)定理科考生需作答兩道理科題和一道文科題,該考生答對(duì)理科題的概率均為,答對(duì)文科題的概率均為,若每題答對(duì)得10分,否則得零分.現(xiàn)該生已抽到三道題(兩理一文),求其所得總分的分布列與數(shù)學(xué)期望.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,三棱柱的所有棱長(zhǎng)均為2,平面平面, , 的中點(diǎn).

(1)證明:

(2)若是棱的中點(diǎn),求二面角的余弦值.

查看答案和解析>>

科目: 來源: 題型:

【題目】選修4-4:極坐標(biāo)與參數(shù)方程

在平面直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)).

1)求曲線的普通方程;

2)經(jīng)過點(diǎn)(平面直角坐標(biāo)系中點(diǎn))作直線交曲線兩點(diǎn),若恰好為線段的三等分點(diǎn),求直線的斜率.

查看答案和解析>>

科目: 來源: 題型:

【題目】某車間有5名工人其中初級(jí)工2人,中級(jí)工2人,高級(jí)工1現(xiàn)從這5名工人中隨機(jī)抽取2名.

求被抽取的2名工人都是初級(jí)工的概率;

求被抽取的2名工人中沒有中級(jí)工的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案