科目: 來源: 題型:
【題目】設(shè)是定義在上的函數(shù),若存在,使得在單調(diào)遞增,在上單調(diào)遞減,則稱為上的單峰函數(shù),為峰點,包含峰點的區(qū)間稱為含峰區(qū)間,其含峰區(qū)間的長度為:.
(1)判斷下列函數(shù)中,哪些是“上的單峰函數(shù)”?若是,指出峰點;若不是,說出原因;;
(2)若函數(shù)是上的單峰函數(shù),求實數(shù)的取值范圍;
(3)若函數(shù)是區(qū)間上的單峰函數(shù),證明:對于任意的,若,則為含峰區(qū)間;若,則為含峰區(qū)間;試問當(dāng)滿足何種條件時,所確定的含峰區(qū)間的長度不大于0.6.
查看答案和解析>>
科目: 來源: 題型:
【題目】甲、乙二人用4張撲克牌分別是紅桃2,紅桃3,紅桃4,方片4玩游戲,他們將撲克牌洗勻后,背面朝上放在桌面上,甲先抽,乙后抽,抽出的牌不放回,各抽一張.
寫出甲、乙二人抽到的牌的所有情況;
甲乙約定,若甲抽到的牌的牌面數(shù)字比乙大,則甲勝;否則乙勝,你認(rèn)為此約定是否公平?請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,河的兩岸分別有生活小區(qū)和,其中,三點共線,與的延長線交于點,測得,,,,,若以所在直線分別為軸建立平面直角坐標(biāo)系則河岸可看成是曲線(其中是常數(shù))的一部分,河岸可看成是直線(其中為常數(shù))的一部分.
(1)求的值.
(2)現(xiàn)準(zhǔn)備建一座橋,其中分別在上,且,的橫坐標(biāo)為.寫出橋的長關(guān)于的函數(shù)關(guān)系式,并標(biāo)明定義域;當(dāng)為何值時,取到最小值?最小值是多少?
查看答案和解析>>
科目: 來源: 題型:
【題目】某校從參加高一年級期末考試的學(xué)生中抽出60名學(xué)生,將其數(shù)學(xué)成績(均為整數(shù))分成六段后,畫出如下部分頻率分布直方圖.觀察圖形的信息,回答下列問題:
(1)求第四小組的頻率,補(bǔ)全頻率分布直方圖,并求樣本數(shù)據(jù)的眾數(shù),中位數(shù),平均數(shù)和方差,(同一組中的數(shù)據(jù)用該區(qū)間的中點值作代表);
(2)從被抽取的數(shù)學(xué)成績是分以上(包括分)的學(xué)生中選兩人,求他們在同一分?jǐn)?shù)段的概率;
(3)假設(shè)從全市參加高一年級期末考試的學(xué)生中,任意抽取個學(xué)生,設(shè)這四個學(xué)生中數(shù)學(xué)成績?yōu)?/span>分以上(包括分)的人數(shù)為(以該校學(xué)生的成績的頻率估計概率),求的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知等差數(shù)列的前項和為,數(shù)列是等比數(shù)列,且滿足 , , .
(1)求數(shù)列的通項公式;
(2)數(shù)列的前項和為,若對一切正整數(shù)都成立,求的最小值.
查看答案和解析>>
科目: 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,以為極點, 軸的正半軸為極軸建立極坐標(biāo)系.若直線的極坐標(biāo)方程為,曲線的極坐標(biāo)方程為,將曲線上所有點的橫坐標(biāo)縮短為原來的一半,縱坐標(biāo)不變,然后再向右平移一個單位得到曲線.
(Ⅰ)求曲線的直角坐標(biāo)方程;
(Ⅱ)已知直線與曲線交于兩點,點,求的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】以表示值域為的函數(shù)組成的集合,表示具有如下性質(zhì)的函數(shù)組成的集合:對于函數(shù),存在一個正數(shù),使得函數(shù)的值域包含于區(qū)間。例如,當(dāng),時,,。則下列命題中正確的是:( )
A.設(shè)函數(shù)的定義域為,則“”的充要條件是“,,”
B.函數(shù)的充要條件是有最大值和最小值
C.若函數(shù),的定義域相同,且,,則
D.若函數(shù)有最大值,則
查看答案和解析>>
科目: 來源: 題型:
【題目】已知向量.
(1)求函數(shù)f(x)的單調(diào)增區(qū)間.
(2)若方程上有解,求實數(shù)m的取值范圍.
(3)設(shè),已知區(qū)間[a,b](a,b∈R且a<b)滿足:y=g(x)在[a,b]上至少含有100個零點,在所有滿足上述條件的[a,b]中求b﹣a的最小值.
查看答案和解析>>
科目: 來源: 題型:
【題目】從某市主辦的科技知識競賽的學(xué)生成績中隨機(jī)選取了40名學(xué)生的成績作為樣本,已知這些成績?nèi)吭?0分至100分之間,現(xiàn)將成績按如下方式分成6組:第一組;第二組;;第六組,并據(jù)此繪制了如圖所示的頻率分布直方圖.
求成績在區(qū)間內(nèi)的學(xué)生人數(shù);
估計這40名學(xué)生成績的眾數(shù)和中位數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com