相關(guān)習(xí)題
 0  232961  232969  232975  232979  232985  232987  232991  232997  232999  233005  233011  233015  233017  233021  233027  233029  233035  233039  233041  233045  233047  233051  233053  233055  233056  233057  233059  233060  233061  233063  233065  233069  233071  233075  233077  233081  233087  233089  233095  233099  233101  233105  233111  233117  233119  233125  233129  233131  233137  233141  233147  233155  266669 

科目: 來源: 題型:填空題

9.已知函數(shù)f(x)=cosx,x∈($\frac{π}{2}$,3π),若方程f(x)=m有三個從小到大排列的根x1,x2,x3,且x22=x1x3,則m的值為-$\frac{1}{2}$.

查看答案和解析>>

科目: 來源: 題型:填空題

8.若a=sin(sin2009°),b=sin(cos2009°),c=cos(sin2009°),d=cos(cos2009°)則a,b,c,d從小到大的順序是b<a<d<c.

查看答案和解析>>

科目: 來源: 題型:選擇題

7.以$2i-\sqrt{5}$的虛部為實部,以$\sqrt{5}i+2{i^2}$的實部為虛部的新復(fù)數(shù)是( 。
A.2-2iB.2+iC.-$\sqrt{5}$+$\sqrt{5}i$D.$\sqrt{5}$+$\sqrt{5}$i

查看答案和解析>>

科目: 來源: 題型:填空題

6.設(shè)函數(shù)f(x)=x3+($\frac{m}{2}$+2)x2-2x,(x>0),若對于任意的t∈[1,2],函數(shù)f(x)在區(qū)間(t,3)上總不是單調(diào)函數(shù),則m的取值范圍是為$(-\frac{37}{3},-9)$.

查看答案和解析>>

科目: 來源: 題型:填空題

5.設(shè)D為△ABC所在平面內(nèi)一點,$\overrightarrow{BC}$=3$\overrightarrow{CD}$,$\overrightarrow{AD}$=m$\overrightarrow{AB}$+n$\overrightarrow{AC}$,則n-m=$\frac{5}{3}$.

查看答案和解析>>

科目: 來源: 題型:選擇題

4.在△ABC中,角A,B,C的對邊分別為a,b,c,且2cos2$\frac{A-B}{2}$cosB-sin(A-B)sinB+cos(A+C)=-$\frac{3}{5}$,a=4$\sqrt{2}$,b=5,則向量$\overrightarrow{BA}$在$\overrightarrow{BC}$方向上的投影為(  )
A.$\frac{{\sqrt{2}}}{2}$B.$-\frac{{\sqrt{2}}}{2}$C.$\frac{3}{5}$D.$-\frac{3}{5}$

查看答案和解析>>

科目: 來源: 題型:填空題

3.設(shè)函數(shù)y=f(x)在R內(nèi)有定義,對于給定的正數(shù)K,定義函數(shù)fK(x)=$\left\{\begin{array}{l}{f(x),f(x)≤K}\\{K,f(x)>K}\end{array}\right.$,取函數(shù)f(x)=2-|x|.當(dāng)K=$\frac{1}{2}$時,函數(shù)fK(x)的單調(diào)遞減區(qū)間為(1,+∞).

查看答案和解析>>

科目: 來源: 題型:選擇題

2.把正整數(shù)按一定的規(guī)則排成了如圖所示的三角形數(shù)表.設(shè)aij(i,j∈N*)是位于這個三角形數(shù)表中從上往下數(shù)第i行、從左往右數(shù)第j個數(shù),如a42=8.若aij=2016,則i與j的和為( 。
A.80B.81C.82D.83

查看答案和解析>>

科目: 來源: 題型:選擇題

1.設(shè)全集U=R,A={x∈Z|y=ln(2-x)},B={x|x2≤2x},則A∩B=(  )
A.{x∈Z|x<2}B.{x∈Z|0≤x<2}C.{1,2}D.{0,1,2}

查看答案和解析>>

科目: 來源: 題型:解答題

20.已知橢圓C的中心在原點,焦點在x軸上,離心率為e=$\frac{\sqrt{6}}{3}$,右焦點到右頂點的距離為$\sqrt{3}$-$\sqrt{2}$
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)設(shè)F1,F(xiàn)2為橢圓的左,右焦點,過F2作直線交橢圓C于P,Q兩點,求△PQF1的內(nèi)切圓半徑r的最大值.

查看答案和解析>>

同步練習(xí)冊答案