相關(guān)習題
 0  232887  232895  232901  232905  232911  232913  232917  232923  232925  232931  232937  232941  232943  232947  232953  232955  232961  232965  232967  232971  232973  232977  232979  232981  232982  232983  232985  232986  232987  232989  232991  232995  232997  233001  233003  233007  233013  233015  233021  233025  233027  233031  233037  233043  233045  233051  233055  233057  233063  233067  233073  233081  266669 

科目: 來源: 題型:填空題

17.已知對任意的x,y∈R,都有f(x•y)=xf(y)+yf(x)成立.若數(shù)列{an}滿足${a_n}=f({2^n})(n∈{N^*})$,且a1=2,則數(shù)列{an}的前n項和${S_n}=(n-1){2^{n+1}}+2$.

查看答案和解析>>

科目: 來源: 題型:解答題

16.已知橢圓Cl的方程為$\frac{{x}^{2}}{{4}^{2}}$+$\frac{{y}^{2}}{{3}^{2}}$=1,橢圓C2的短軸為C1的長軸且離心率為$\frac{\sqrt{3}}{2}$.
(I)求橢圓C2的方程;
(Ⅱ)如圖,M、N分別為直線l與橢圓Cl、C2的一個交點,P為橢圓C2與y軸的交點,△PON面積為△POM面積的2倍,若直線l的方程為y=kx(k>0),求k的值.

查看答案和解析>>

科目: 來源: 題型:解答題

15.某餐飲業(yè)培訓(xùn)學(xué)校對男、女各20名學(xué)員進行考評,考評成績(滿分100分)如莖葉圖所示:
(I)若大于或等于80分為優(yōu)秀學(xué)員,80分以下為非優(yōu)秀學(xué)員,根據(jù)莖葉圖填寫2×2列聯(lián)表,并判斷能否有95%的把握認為學(xué)員的優(yōu)秀與性別有關(guān)?
非優(yōu)秀優(yōu)秀總數(shù)
20
20
總數(shù)40
(Ⅱ)若從考評成績95分以上(包括95分)的學(xué)員中任選兩人代表學(xué)校參加上一級單位舉辦的服務(wù)比賽,求至少有一名男學(xué)員參加的概率.
下面的臨界值表供參考:
 P(K2≥k) 0.15 0.10 0.05 0.025 0.010 0.005 0.001
 k 2.072 2.706 3.841 5.024 6.635 7.879 10.828
(參考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$)n=a+b+c+d.

查看答案和解析>>

科目: 來源: 題型:填空題

14.已知圓C:x2+y2+2x+4y+4=0,直線l:sinθx+cosθy-4=0,則直線,與圓C的位置關(guān)系為相離.

查看答案和解析>>

科目: 來源: 題型:填空題

13.已知f(x)=2cos($\frac{π}{3}$x+φ)的一個對稱中心為(2,0),φ∈(0,π),則φ=$\frac{5π}{6}$.

查看答案和解析>>

科目: 來源: 題型:選擇題

12.已知向量$\overrightarrow a=({-3,1,\sqrt{6}})$,則與向量$\overrightarrow a$共線的單位向量為( 。
A.$({-3,1,\sqrt{6}})$和$({3,-1,-\sqrt{6}})$B.$({-\frac{3}{4},\frac{1}{4},\frac{{\sqrt{6}}}{4}})$
C.$({-\frac{3}{4},\frac{1}{4},\frac{{\sqrt{6}}}{4}})$和$({\frac{3}{4},-\frac{1}{4},-\frac{{\sqrt{6}}}{4}})$D.$({3,-1,-\sqrt{6}})$

查看答案和解析>>

科目: 來源: 題型:選擇題

11.函數(shù)f(x)=ex+lnx在點(1,f(1))處的切線的方程為( 。
A.ex-y+e-1=0B.(e+1)x-y-1=0C.x+y-e-1=0D.2e-y-e=0

查看答案和解析>>

科目: 來源: 題型:選擇題

10.在平面直角坐標系中,角α的頂點與原點重合,始邊與x軸的非負半軸重合,終邊過點P(-$\sqrt{3}$,-1),則cos2α=( 。
A.$\frac{1}{2}$B.-$\frac{\sqrt{3}}{2}$C.-$\frac{1}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目: 來源: 題型:填空題

9.對于定義域和值域都為[0,1]的函數(shù)f(x),設(shè)f1(x)=f(x),${f_2}(x_0)=f({f_1}(x)),…,{f_n}(x)=f({f_{n-1}}(x))\;(n∈{N^*})$,若x0滿足fn(x0)=x0,則x0稱為f(x)的n階周期點.
(1)若f(x)=1-x(0≤x≤1),則f(x)的3價周期點的值為$\frac{1}{2}$;
(2)若$f(x)=\left\{{\begin{array}{l}{2x,x∈[{0,\frac{1}{2}}]}\\{2-2x,x∈({\frac{1}{2},1}]}\end{array}}\right.$,則f(x)的2階周期點的個數(shù)是4.

查看答案和解析>>

科目: 來源: 題型:填空題

8.等差數(shù)列{an},其前n項和為Sn,且S30>0,S31<0,則前15項之和最大.

查看答案和解析>>

同步練習冊答案