相關(guān)習題
 0  232855  232863  232869  232873  232879  232881  232885  232891  232893  232899  232905  232909  232911  232915  232921  232923  232929  232933  232935  232939  232941  232945  232947  232949  232950  232951  232953  232954  232955  232957  232959  232963  232965  232969  232971  232975  232981  232983  232989  232993  232995  232999  233005  233011  233013  233019  233023  233025  233031  233035  233041  233049  266669 

科目: 來源: 題型:選擇題

4.設(shè)曲線y=f(x)(x∈R)上任一點(x0,f(x0))處的切線斜率為k=(x0-2)(x0+1)2,則( 。
A.f(x)有唯一的極小值f(2)B.f(x)既有極小值f(2)又有極大值f(-1)
C.f(x)在(-∞,2)上為增函數(shù)D.f(x)在(-∞,-1)∪(-1,2)上為增函數(shù)

查看答案和解析>>

科目: 來源: 題型:解答題

3.如圖,橢圓的中心在原點,其左焦點F1與拋物線y2=-4x的焦點重合,過點F1的直線l與橢圓交于A,B兩點,與拋物線交于C,D兩點,當直線l與x軸垂直時,$\frac{|CD|}{|AB|}$=2$\sqrt{2}$.
(1)求橢圓的方程;
(2)設(shè)F2是橢圓的右焦點,求$\overrightarrow{{F_2}A}$•$\overrightarrow{{F_2}B}$的最大值和最小值.

查看答案和解析>>

科目: 來源: 題型:解答題

2.在直四棱柱ABCD-A1B1C1D1中,AA1=2,底面是邊長為1的正方體,E,F(xiàn)分別是棱B1B,DA的中點.
(1)求證:BF∥平面AD1E;
(2)求二面角D1-AE-C的大。

查看答案和解析>>

科目: 來源: 題型:解答題

1.數(shù)列{an}的前n項和為Sn,滿足:Sn=f(n)=n2+2a|n-2|.
(1)若數(shù)列{an}為遞增數(shù)列,求實數(shù)a的取值范圍;
(2)當a=$\frac{1}{2}$時,設(shè)數(shù)列{bn}滿足:bn=2an,記{bn}的前n項和為Tn,求Tn,并求滿足不等式Tn>2015的最小整數(shù)n.

查看答案和解析>>

科目: 來源: 題型:填空題

20.設(shè)a∈R,函數(shù)f(x)=x|x-a|-a,若對任意的x∈[2,3],f(x)≥0恒成立,則a的取值范圍是(-∞,$\frac{4}{3}$]∪[$\frac{9}{2}$,+∞).

查看答案和解析>>

科目: 來源: 題型:選擇題

19.已知橢圓的焦點是F1(0,-$\sqrt{3}$),F(xiàn)2(0,$\sqrt{3}$),離心率e=$\frac{{\sqrt{3}}}{2}$,若點P在橢圓上,且$\overrightarrow{P{F_1}}$•$\overrightarrow{P{F_2}}$=$\frac{2}{3}$,則∠F1PF2的大小為( 。
A.$\frac{π}{12}$B.$\frac{π}{6}$C.$\frac{π}{4}$D.$\frac{π}{3}$

查看答案和解析>>

科目: 來源: 題型:選擇題

18.在四面體ABCD中,AB=CD=$\sqrt{10}$,AC=BD=$\sqrt{5}$,AD=BC=$\sqrt{13}$,則四面體的外接球的表面積為( 。
A.6$\sqrt{3}$πB.8$\sqrt{3}$πC.14πD.16π

查看答案和解析>>

科目: 來源: 題型:選擇題

17.在平面直角坐標系xOy中,點P為雙曲線x2-2y2=1的左支上的一個動點,若點P到直線x+$\sqrt{2}$y-3=0的距離大于c恒成立,則實數(shù)c的最大值為( 。
A.1B.$\sqrt{3}$C.$\frac{{\sqrt{3}}}{3}$D.$\frac{{\sqrt{6}}}{6}$

查看答案和解析>>

科目: 來源: 題型:選擇題

16.設(shè)A={(m,n)|0<m<2,0<n<2},則任。╩,n)∈A,關(guān)于x的方程$\frac{m}{4}$x2+x+n=0有實根的概率為( 。
A.$\frac{1+2ln2}{4}$B.$\frac{1+ln2}{2}$C.$\frac{3-2ln2}{4}$D.$\frac{1-ln2}{2}$

查看答案和解析>>

科目: 來源: 題型:選擇題

15.如下程序框圖是由直角三角形兩條直角邊a,b求斜邊的算法,其中正確的是( 。
A.B.C.D.

查看答案和解析>>

同步練習冊答案