相關習題
 0  232825  232833  232839  232843  232849  232851  232855  232861  232863  232869  232875  232879  232881  232885  232891  232893  232899  232903  232905  232909  232911  232915  232917  232919  232920  232921  232923  232924  232925  232927  232929  232933  232935  232939  232941  232945  232951  232953  232959  232963  232965  232969  232975  232981  232983  232989  232993  232995  233001  233005  233011  233019  266669 

科目: 來源: 題型:填空題

4.直三棱柱ABC-A1B1C1的各頂點都在同一球面上,若AB=3,AC=2,AA1=$\frac{2\sqrt{6}}{3}$,∠BAC=60°,則它的這個外接球的表面積為12π.

查看答案和解析>>

科目: 來源: 題型:選擇題

3.${∫}_{1}^{e}lnxdx$=( 。
A.$\frac{1}{e}$-1B.e-1C.1D.e

查看答案和解析>>

科目: 來源: 題型:選擇題

2.設曲線f(x)=alnx+b和曲線g(x)=sin$\frac{πx}{2}$+cx在它們的公共點M(1,2)處有相同的切線,則a+b+c的值為( 。
A.0B.πC.-2D.4

查看答案和解析>>

科目: 來源: 題型:填空題

1.已知函數(shù)$f(x)=\frac{x-a}{x+1}{e^x}$,在定義域內(nèi)有極值點,則實數(shù)a的取值范圍是(-∞,-1)∪(3,+∞).

查看答案和解析>>

科目: 來源: 題型:解答題

20.為了調(diào)查學生星期天晚上學習時間利用問題,某校從高二年級1000名學生(其中走讀生450名,住宿生550名)中,采用分層抽樣的方法抽取n名學生進行問卷調(diào)查,根據(jù)問卷取得了這n名同學每天晚上學習時間(單位:分鐘)的數(shù)據(jù),按照以下區(qū)間分為八組①[0,30)②[30,60)③[60,90),④[90,120),⑤[120,150),⑥[150,180),⑦[180,210),⑧[210,240),得到頻率分布直方圖如下,已知抽取的學生中星期天晚上學習時間少于60分鐘的人數(shù)為5人:
(I)求n的值并補全下列頻率分布直方圖;
(II)如果把“學生晚上學習時間達到兩小時”作為是否充分利用時間的標準,對抽取的n名學生,完成下列2×2列聯(lián)表:
利用時間充分利用時間不充分總計
走讀生
住宿生10
總計
據(jù)此資料,你是否認為學生“利用時間是否充分”與走讀、住宿有關?
(III)若在第①組、第 ②組、第⑧組中共抽出3人調(diào)查影響有效利用時間的原因,記抽到“學習時間少于60分鐘”的學生人數(shù)為X,求X的分布列及期望;
參考公式:${k^2}=\frac{{n{{({{n_{11}}{n_{22}}-{n_{12}}{n_{21}}})}^2}}}{{{n_{11}}{n_{21}}{n_{12}}{n_{22}}}}$.

查看答案和解析>>

科目: 來源: 題型:選擇題

19.設$a={log_2}3+{log_2}\sqrt{3},b={log_2}9-{log_2}\sqrt{3},c={log_{\sqrt{2}}}\sqrt{3}$,則a,b,c的大小關系是(  )
A.a=b<cB.a=b>cC.a<b<cD.a>b>c

查看答案和解析>>

科目: 來源: 題型:解答題

18.已知函數(shù)f(x)=e2-ax-1,g(x)=ln(ex-1)-lnx
(1)求證:當ax<x時,f(x)>0恒成立;
(2)當a≤1,對任意x>0,比較f(g(x))與f(x)的大小.

查看答案和解析>>

科目: 來源: 題型:解答題

17.已知函數(shù)f(x)=$\left\{\begin{array}{l}(2-a)x-12,x≤7\\{(a+2)^{x-6}},x>7\end{array}$是R上的增函數(shù)
(1)求實數(shù)a的取值范圍;
(2)若g(x)=-$\frac{1}{3}{x^3}+\frac{1}{2}{x^2}$+2x,當x∈[1,4]時,試比較$f(g(x)),f(\frac{10}{3}),f(-\frac{16}{3})$的大小,并說明理由.

查看答案和解析>>

科目: 來源: 題型:填空題

16.已知數(shù)列an的前n項和${S_n}=-{a_n}-{(\frac{1}{2})^{n-1}}+2(n∈{N^*})$,則數(shù)列{2nan}的前100項的和為5050.

查看答案和解析>>

科目: 來源: 題型:選擇題

15.已知點P是拋物線y=ax2上的一個動點,且點P到點A(2,0)的距離與點P到該拋物線準線的距離之和的最小值為$\sqrt{5}$,則a的值為(  )
A.$\frac{1}{4}$B.4C.$±\frac{1}{4}$D.±4

查看答案和解析>>

同步練習冊答案