相關習題
 0  232802  232810  232816  232820  232826  232828  232832  232838  232840  232846  232852  232856  232858  232862  232868  232870  232876  232880  232882  232886  232888  232892  232894  232896  232897  232898  232900  232901  232902  232904  232906  232910  232912  232916  232918  232922  232928  232930  232936  232940  232942  232946  232952  232958  232960  232966  232970  232972  232978  232982  232988  232996  266669 

科目: 來源: 題型:選擇題

1.2x=7y=196,則$\frac{1}{x}+\frac{1}{y}$=( 。
A.2B.$\frac{1}{2}$C.3D.$\frac{1}{3}$

查看答案和解析>>

科目: 來源: 題型:選擇題

20.若向量$\overrightarrow{a}$,$\overrightarrow$滿足:($\overrightarrow{a}$-$\overrightarrow$)•(2$\overrightarrow{a}$+$\overrightarrow$)=-4,且|$\overrightarrow{a}$|=2,|$\overrightarrow$|=4,則$\overrightarrow{a}$與$\overrightarrow$的夾角為(  )
A.30°B.60°C.120°D.150°

查看答案和解析>>

科目: 來源: 題型:填空題

19.已知函數(shù)$f(x)=\left\{{\begin{array}{l}{|{lgx}|,0<x≤3}\\{f(6-x),3<x<6}\end{array}}\right.$,設方程f(x)=2-x+b(b∈R)的四個實根從小到大依次x1,x2,x3,x4,對于滿足條件的任意一組實根,下列判斷中正確的為(1),(2),(3).(請?zhí)钏姓_命題的序號)
(1)0<x1x2<1或0<(6-x3)(6-x4)<1;
(2)0<x1x2<1且(6-x3)(6-x4)>1;
(3)1<x1x2<9或9<x3x4<25;        
(4)1<x1x2<9且25<x3x4<36.

查看答案和解析>>

科目: 來源: 題型:解答題

18.如圖,已知直四棱柱ABCD-A1B1C1D1的底面是菱形,且∠DAB=60°,AD=AA1,F(xiàn)為棱BB1的中點,M為線段AC1的中點.
(1)求證:直線MF∥平面ABCD
(2)求證:MF⊥平面ACC1

查看答案和解析>>

科目: 來源: 題型:解答題

17.如圖,已知E,F(xiàn)分別為正方體ABCD-A1B1C1D1的棱AA1和CC1上的點,且$\frac{AE}{A{A}_{1}}$=$\frac{{C}_{1}F}{C{C}_{1}}$=λ,λ∈(0,1),延長D1E,D1F與平面ABCD分別相交于M,N兩點.
(1)求證:M,B,N三點共線.
(2)若四邊形BFD1E為菱形,求λ的值,并說明理由.

查看答案和解析>>

科目: 來源: 題型:填空題

16.已知l為直線,α,β為兩個不同平面,若α∥β,l∥α,則l與β的位置關系為l∥β或l?β.

查看答案和解析>>

科目: 來源: 題型:填空題

15.化簡lg52+lg2lg50+lg22=2.

查看答案和解析>>

科目: 來源: 題型:解答題

14.直線ln:y=3x-$\sqrt{10n}$與圓Cn:x2+y2=6an+n+6交于不同的兩點An、Bn,n∈N*.數(shù)列{an}滿足:a1=1,3an+1=$\frac{1}{4}{|{{A_n}{B_n}}|^2}$
(1)求數(shù)列{an}的通項公式;
(2)若bn=$\frac{{{a_n}+2}}{3}$,求數(shù)列{bn}的前n項和T.

查看答案和解析>>

科目: 來源: 題型:選擇題

13.平行四邊形ABCD中,$\overrightarrow{AB}$=(1,0),$\overrightarrow{AD}$=(1,2),則$\overrightarrow{AC}$•$\overrightarrow{BD}$等于(  )
A.-4B.4C.2D.-2

查看答案和解析>>

科目: 來源: 題型:選擇題

12.某年級文科班共有4個班級,每班各有40位學生(其中男生8人,女生32人).若從該年級文科生中以簡單隨機抽樣抽出20人,則下列選項中正確的是( 。
A.每班至少會有一人被抽中
B.抽出來的女生人數(shù)一定比男生人數(shù)多
C.已知小文是男生,小美是女生,則小文被抽中的概率小于小美被抽中的概率
D.若學生甲和學生乙在同一班,學生丙在另外一班,則甲、乙、丙三人各自被抽中的概率相等

查看答案和解析>>

同步練習冊答案