相關(guān)習(xí)題
 0  211892  211900  211906  211910  211916  211918  211922  211928  211930  211936  211942  211946  211948  211952  211958  211960  211966  211970  211972  211976  211978  211982  211984  211986  211987  211988  211990  211991  211992  211994  211996  212000  212002  212006  212008  212012  212018  212020  212026  212030  212032  212036  212042  212048  212050  212056  212060  212062  212068  212072  212078  212086  266669 

科目: 來源: 題型:

某中學(xué)采取分層抽樣的方法從應(yīng)屆高三學(xué)生中按照性別抽取20名學(xué)生,其中8名女生中有3名報考理科,男生中有2名報考文科.
(1)是根據(jù)以上信息,寫出2×2列聯(lián)表
(2)用獨立性檢驗的方法分析,能否在犯錯誤的概率不超過0.05的前提下認(rèn)為該中學(xué)的高三學(xué)生選報文理科與性別有關(guān)?

查看答案和解析>>

科目: 來源: 題型:

在平面直角坐標(biāo)系xOy中,點A(cosθ,
2
sinθ),B(sinθ,0),其中θ∈R.
(Ⅰ)當(dāng)θ=
3
,求向量
AB
的坐標(biāo);
(Ⅱ)當(dāng)θ∈[0,
π
2
]時,求|
AB
|的最大值.

查看答案和解析>>

科目: 來源: 題型:

在數(shù)列{an}中,an=
1
n
(n∈N*).從數(shù)列{an}中選出k(k≥3)項并按原順序組成的新數(shù)列記為{bn},并稱{bn}為數(shù)列{an}的k項子列.例如數(shù)列
1
2
,
1
3
,
1
5
,
1
8
為{an}的一個4項子列.
(Ⅰ)試寫出數(shù)列{an}的一個3項子列,并使其為等比數(shù)列;
(Ⅱ)如果{bn}為數(shù)列{an}的一個5項子列,且{bn}為等差數(shù)列,證明:{bn}的公差d滿足-
1
4
<d<0;
(Ⅲ)如果{cn}為數(shù)列{an}的一個6項子列,且{cn}為等比數(shù)列,證明:c1+c2+c3+c4+c5+c6
63
32

查看答案和解析>>

科目: 來源: 題型:

已知f(x)為定義在(-∞,0)∪(0,+∞)上的奇函數(shù),當(dāng)x<0時,f(x)=x2-x-2,解不等式f(x)>0.

查看答案和解析>>

科目: 來源: 題型:

求函數(shù)y=-
x
x2+2x+2
,x∈[1,3]的值域.

查看答案和解析>>

科目: 來源: 題型:

設(shè)函數(shù)f(x)在定義域[-1,1]是奇函數(shù),當(dāng)x∈[-1,0]時,f(x)=-3x2
(1)當(dāng)x∈[0,1],求f(x);
(2)對任意a∈[-1,1],x∈[-1,1],不等式f(x)≤2cos2θ-asinθ+1都成立,求θ的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

設(shè)函數(shù)f(x)=
m
n
,其中向量
m
=(cosx,
3
cosx),
n
=(2cosx,2sinx).
(1)求函數(shù)f(x)的單調(diào)增區(qū)間;
(2)在△ABC中,a,b,c分別是角A,B,C的對邊,f(A)=2,a=
3
,b+c=3,求△ABC的面積.

查看答案和解析>>

科目: 來源: 題型:

已知f(x)=8x2-6kx+(2k+1)
(1)若f(x)=0的兩根分別為某三角形兩內(nèi)角的正弦值,求k的取值范圍;
(2)問是否存在實數(shù)k,使得f(x)=0的兩根是直角三角形兩個銳角的正弦值.

查看答案和解析>>

科目: 來源: 題型:

圓x2+y2=8內(nèi)有一點P(-1,2),AB為過點P且傾斜角為α的弦,
(1)當(dāng)α=135°時,求|AB|;
(2)當(dāng)弦AB被點P平分時,求出直線AB的方程;
(3)設(shè)過P點的弦的中點為M,求點M的坐標(biāo)所滿足的關(guān)系式.

查看答案和解析>>

科目: 來源: 題型:

已知函數(shù)f(x)=
ax-b
x2+1
在點(1,f(1))的切線方程為x-y-1=0.
(Ⅰ)求函數(shù)f(x)的解析式;
(Ⅱ)設(shè)g(x)=lnx,求證:g(x)≥f(x)在x∈[1,+∞)上恒成立;
(Ⅲ)已知0<a<b,求證:
lnb-lna
b-a
2a
a2+b2

查看答案和解析>>

同步練習(xí)冊答案