相關習題
 0  211686  211694  211700  211704  211710  211712  211716  211722  211724  211730  211736  211740  211742  211746  211752  211754  211760  211764  211766  211770  211772  211776  211778  211780  211781  211782  211784  211785  211786  211788  211790  211794  211796  211800  211802  211806  211812  211814  211820  211824  211826  211830  211836  211842  211844  211850  211854  211856  211862  211866  211872  211880  266669 

科目: 來源: 題型:

(1)證明:xlnx≥x-1;
(2)討論函數f(x)=ex-ax-1的零點個數.

查看答案和解析>>

科目: 來源: 題型:

已知函數f(x)=cos2x+2sinxcosx-sin2x
(Ⅰ)求f(
π
4
)的值;
(Ⅱ)求函數f(x)的單調增區(qū)間與最大值.

查看答案和解析>>

科目: 來源: 題型:

閱讀:已知a、b∈(0,+∞),a+b=1,求y=
1
a
+
2
b
的最小值.解法如下:y=
1
a
+
2
b
=(
1
a
+
2
b
)(a+b)=
b
a
+
2a
b
+3≥3+2
2
,當且僅當
b
a
=
2a
b
,即a=
2
-1,b=2-
2
時取到等號,則y=
1
a
+
2
b
的最小值為3+2
2
.應用上述解法,求解下列問題:
(1)已知a,b,c∈(0,+∞),a+b+c=1,求y=
1
a
+
1
b
+
1
c
的最小值;
(2)已知x∈(0,
1
2
),求函數y=
1
x
+
8
1-2x
的最小值;
(3)已知正數a1、a2、a3,…,an,a1+a2+a3+…+an=1,求證:S=
a12
a1+a2
+
a22
a2+a3
+
a32
a3+a4
+…+
an2
an+a1
1
2

查看答案和解析>>

科目: 來源: 題型:

某市教育主管部門為了弘揚民族文化,在全市各中學開展?jié)h字聽寫大賽,某學校經過七輪選拔,最后選出甲乙兩名選手代表本校參加市里比賽,甲乙兩名選手七輪比賽得分情況如下表所示:
86 94 89 88 91 90 92
88 89 90 91 93 92 87
(1)根據表中的數據分析,哪位選手成績更為穩(wěn)定?
(2)從甲選手的7次成績中隨機抽取兩次成績,求抽出的兩次成績的分數差值至少是3分的概率.

查看答案和解析>>

科目: 來源: 題型:

已知函數f(x)=
3
sinxcosx+sin2x-
5
2
,x∈R

(1)求函數f(x)最大值和最小正周期;
(2)設△ABC內角A、B、C所對的邊分別為a、b、c,且c=3,f(C)=-1.若sinB=2sinA,求a、b的值.

查看答案和解析>>

科目: 來源: 題型:

如圖,C、D是兩個小區(qū)所在地,C、D到一條公路AB的垂直距離分別為CA=1km,DB=2km,AB兩端之間的距離為6km.

(1)如圖1,某移動公司將在AB之間找一點P,在P處建造一個信號塔,使得P對A、C的張角與P對B、D的張角相等,試確定點P的位置.
(2)如圖2,環(huán)保部門將在AB之間找一點Q,在Q處建造一個垃圾處理廠,使得Q對C、D所張角最大,試確定點Q的位置.

查看答案和解析>>

科目: 來源: 題型:

從6名短跑運動員中選出4人參加4×100m接力賽.試求滿足下列條件的參賽方案各有多少種?
(1)甲不能跑第一棒和第四棒;
(2)甲不能跑第一棒,乙不能跑第四棒.

查看答案和解析>>

科目: 來源: 題型:

一個袋中裝有大小相同的黑球和白球共9個,從中任取2個球,記隨機變量X為取出2球中白球的個數,已知P(X=2)=
5
12

(Ⅰ)求袋中白球的個數;
(Ⅱ)求隨機變量X的分布列及其數學期望.

查看答案和解析>>

科目: 來源: 題型:

在銳角△ABC中,a,b,c分別為角A,B,C的對邊,且4sin2
B+C
2
-cos2A=
7
2

(1)求角A的大;
(2)若BC邊上高為1,求△ABC面積的最小值?

查看答案和解析>>

科目: 來源: 題型:

四川省第十二屆運動會將于2014年8月18日在我市開幕.為了搞好接待工作,大會組委會在四川職業(yè)技術學院招募了12名男志愿者和18名女志愿者,將這30名志愿者的身高(單位:cm)編成如下莖葉圖:

若身高在175cm以上(包括175cm)定義為“高個子”,身高在175cm以下定義為“非高個子”,且只有“女高個子”才能擔任“禮儀小姐”
(1)如果用分層抽樣的方法從“高個子”和“非高個子”中抽取5人,再從這5人中選2人,那么至少有1人是“高個子”的概率是多少?
(2)若從身高180cm以上(包括180cm)的志愿者中選出男、女各一人,求這2人身高相差5cm以上的概率.

查看答案和解析>>

同步練習冊答案