相關(guān)習(xí)題
 0  210807  210815  210821  210825  210831  210833  210837  210843  210845  210851  210857  210861  210863  210867  210873  210875  210881  210885  210887  210891  210893  210897  210899  210901  210902  210903  210905  210906  210907  210909  210911  210915  210917  210921  210923  210927  210933  210935  210941  210945  210947  210951  210957  210963  210965  210971  210975  210977  210983  210987  210993  211001  266669 

科目: 來源: 題型:

為了選拔參加奧運會選手,教練員對甲,乙自行車運動員進行了6次測試,測得他們的速度數(shù)據(jù)如下表所示(單位m/s).
            7
8  7  5  1  0
2
3
8  9
      3  4  6  8
估計甲、乙兩運動員各自速度的平均數(shù)和方差,并判斷誰參加比賽更合適.

查看答案和解析>>

科目: 來源: 題型:

某公司擬資助三位大學(xué)生自主創(chuàng)業(yè),現(xiàn)聘請兩位專家,獨立地對每位大學(xué)生的創(chuàng)業(yè)方案進行評審,假設(shè)評審結(jié)果為“支持”與“不支持”的概率分別為
2
3
1
3
,若某人獲得兩個“支持”,則給予10萬元的創(chuàng)業(yè)資助,若只獲得一個“支持”,則給予5萬元的資助,若未獲得“支持”,則不予資助,求:
(1)該公司的資助總額為零的概率
(2)該公司的資助總額超過15萬元的概率.

查看答案和解析>>

科目: 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
中,a:b=
2
:1
,以原點為圓心,橢圓的長半軸為半徑的圓與直線x+y-2=0相切.
(1)求橢圓C的方程;
(2)若過點M(2,0)的直線與橢圓C相交于A,B,|AB|=
2
5
3
,設(shè)P為橢圓上一點,且滿足
OA
+
OB
=t
OP
(O為坐標(biāo)原點),求實數(shù)t的值.

查看答案和解析>>

科目: 來源: 題型:

如圖,正三棱柱ABC-A1B1C1的所有棱長都為2,D為CC1中點.
(1)求二面角B1-BD-A1的余弦值;
(2)求點C1到平面A1BD的距離.

查看答案和解析>>

科目: 來源: 題型:

正方體ABCD-A′B′C′D′的棱長等于2,E,F(xiàn)分別是B′D′,AC的中點.求:
(1)直線AB′和平面ACD′所成角的正弦值;
(2)二面角B′-CD′-A的余弦值;
(3)點B到平面ACD′的距離.

查看答案和解析>>

科目: 來源: 題型:

已知函數(shù)f(x)=x-1-alnx.
(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)若對任意x∈(0,+∞),都有f(x)≥0成立,求實數(shù)a的取值集合.

查看答案和解析>>

科目: 來源: 題型:

是否存在常數(shù)a、b,使等式:12+22+32+…+n2=an(n+b)(2n+1)對一切正整數(shù)n成立?并證明你的結(jié)論.

查看答案和解析>>

科目: 來源: 題型:

過雙曲線x2-y2=1的右焦點F作傾斜角為60°的直線l,交雙曲線于A、B兩點.
(1)求雙曲線的離心率和漸近線;
(2)求|AB|.

查看答案和解析>>

科目: 來源: 題型:

某中學(xué)為推進后勤社會化改革,與建筑公司商定:由該公司向建設(shè)銀行貸款500萬元為某中學(xué)修建可容納一千人的學(xué)生公寓.工程于2010年初動工,年底竣工并交付使用,公寓管理處采用向?qū)W生收費還建行貸款(年利率5%,按復(fù)利計算).公寓每年所收費用除去物業(yè)管理費和水電費共18萬元,其余部分全部在年底還建行貸款.
(1)若公寓收費標(biāo)準(zhǔn)定為每生每年800元,問到哪一年底可以還清全部貸款;
(2)若公寓管理處要在2018年底把貸款全部還清,則每生每年的最低收費標(biāo)準(zhǔn)是多少元?(精確到元)
(lg1.7343=0.239,lg1.05=0.0212,1.058=1.4774)

查看答案和解析>>

科目: 來源: 題型:

三個工程隊要承包5項不同的工程,每隊至少承包一項,問共有多少種不同的承包方案.

查看答案和解析>>

同步練習(xí)冊答案