相關(guān)習(xí)題
 0  209923  209931  209937  209941  209947  209949  209953  209959  209961  209967  209973  209977  209979  209983  209989  209991  209997  210001  210003  210007  210009  210013  210015  210017  210018  210019  210021  210022  210023  210025  210027  210031  210033  210037  210039  210043  210049  210051  210057  210061  210063  210067  210073  210079  210081  210087  210091  210093  210099  210103  210109  210117  266669 

科目: 來源: 題型:

設(shè)函數(shù)f(x)=|x-4|+|x-3|,
(Ⅰ)求f(x)的最小值m
(Ⅱ)當(dāng)a+2b+3c=m(a,b,c∈R)時(shí),求a2+b2+c2的最小值.

查看答案和解析>>

科目: 來源: 題型:

1
sin2x
的導(dǎo)函數(shù).

查看答案和解析>>

科目: 來源: 題型:

已知二次函數(shù)y=x2-x-2,實(shí)數(shù)a>-2
(1)求函數(shù)在-2<x≤a之間的最小值;
(2)求函數(shù)在a≤x≤a+2之間的最小值.

查看答案和解析>>

科目: 來源: 題型:

如圖,矩形ABCD中,|AB|=2
2
,|BC|=2.E,F(xiàn),G,H分別是矩形四條邊的中點(diǎn),分別以HF,EG所在的直線為x軸,y軸建立平面直角坐標(biāo)系,已知
OR
OF
,
CR′
CF
,其中0<λ<1.
(Ⅰ)求證:直線ER與GR′的交點(diǎn)M在橢圓Γ:
x2
2
+y2=1上;
(Ⅱ)若點(diǎn)N是直線l:y=x+2上且不在坐標(biāo)軸上的任意一點(diǎn),F(xiàn)1、F2分別為橢圓Γ的左、右焦點(diǎn),直線NF1和NF2與橢圓Γ的交點(diǎn)分別為P、Q和S、T.是否存在點(diǎn)N,使得直線OP、OQ、OS、OT的斜率kOP、kOQ、kOS、kOT滿足kOP+kOQ+kOS+kOT=0?若存在,求出點(diǎn)N的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目: 來源: 題型:

如圖,在四棱錐P-ABCD中,底面ABCD為菱形,∠BAD=60°,Q為AD的中點(diǎn),點(diǎn)M在線段PC上,MC=2PM.
(Ⅰ)求證:PA∥平面MQB;
(Ⅱ)若平面PAD⊥平面ABCD,PA=PD=AD=2,求二面角M-BQ-C的大。

查看答案和解析>>

科目: 來源: 題型:

設(shè)各項(xiàng)均為正數(shù)的數(shù)列{an}的前n項(xiàng)和為Sn,滿足
a
2
n+1
=4Sn+4n+1,n∈N*
且a2,a5,a14恰好是等比數(shù)列{bn}的前三項(xiàng).
(Ⅰ)求數(shù)列{an}、{bn}的通項(xiàng)公式;
(Ⅱ)記數(shù)列{bn}的前n項(xiàng)和為Tn,若對(duì)任意的n∈N*,(T n+
3
2
)k≥3n-6恒成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

已知集合M={x|-3<x<1},N={x|x≤a},且M∪N={x|x<1},求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

(Ⅰ)試證明柯西不等式:(a2+b2)(x2+y2)≥(ax+by)2(x,y,a,b∈R)
;(Ⅱ)已知x2+y2=2,且|x|≠|(zhì)y|,求
1
(x+y)2
+
1
(x-y)2
的最小值.

查看答案和解析>>

科目: 來源: 題型:

如圖,三棱錐P-ABCD的底面ABCD是正方形,頂點(diǎn)P在底面的射影是AC與BD的交點(diǎn)O,AB=2,∠PAC=60°.
(Ⅰ)求側(cè)面PBC與底面ABCD所成的銳二面角的正切值;
(Ⅱ)在線段PB上是否存在一點(diǎn)E,使得AE⊥PC,若存在,試確定點(diǎn)E的位置,并加以證明;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目: 來源: 題型:

如圖,在四棱錐P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,AP=AB,E,F(xiàn)分別是PB,PC的中點(diǎn).
(Ⅰ)證明:EF∥平面PAD;
(Ⅱ)求證:AE⊥PC.

查看答案和解析>>

同步練習(xí)冊(cè)答案