相關(guān)習(xí)題
 0  209343  209351  209357  209361  209367  209369  209373  209379  209381  209387  209393  209397  209399  209403  209409  209411  209417  209421  209423  209427  209429  209433  209435  209437  209438  209439  209441  209442  209443  209445  209447  209451  209453  209457  209459  209463  209469  209471  209477  209481  209483  209487  209493  209499  209501  209507  209511  209513  209519  209523  209529  209537  266669 

科目: 來(lái)源: 題型:

已知數(shù)列{an}滿足2an+1=an+an+2(n∈N+),其前n項(xiàng)和為Sn,{bn}是等比數(shù)列,且a1=b1=2,a4+b4=27,S4-b4=10.
(1)求數(shù)列{an}與{bn}的通項(xiàng)公式;
(2)記Tn=a1b1+a2b2+…+anbn,n∈N+,求Tn

查看答案和解析>>

科目: 來(lái)源: 題型:

已知函數(shù)f(t)對(duì)任意實(shí)數(shù)x、y都有:f(x+y)=f(x)+f(y)+3xy(x+y+2)+3,且f(1)=1.
(1)求f(0)、f(-1)、f(2)的值;
(2)若t為正整數(shù),求f(t)的表達(dá)式.
(3)滿足條件f(t)=t的所有整數(shù)t能否構(gòu)成等差數(shù)列?若能構(gòu)成等差數(shù)列,求出此數(shù)列;若不能構(gòu)成等差數(shù)列,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目: 來(lái)源: 題型:

已知函數(shù)f(x)=lnx-ax2+2bx(a>0),且f′(1)=0
(1)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(2)試問(wèn)函數(shù)f(x)圖象上是否存在兩點(diǎn)A(x1,y1),B(x2,y2),其中x2>x1,使得函數(shù)f(x)在x=
x1+x2
2
的切線與直線AB平行?若存在,求出A,B的坐標(biāo),不存在說(shuō)明理由.

查看答案和解析>>

科目: 來(lái)源: 題型:

已知等差數(shù)列{an}的前n項(xiàng)和為Sn,且滿足:a2+a4=22,S4=50.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求數(shù)列{an}的前n項(xiàng)和Sn的最大值,并求Sn取最大值時(shí)n的值.

查看答案和解析>>

科目: 來(lái)源: 題型:

等差數(shù)列{an}中,a3=6,S4=20,等比數(shù)列{bn}中,b3=a2,b4=a4
(1)求數(shù)列{an}的通項(xiàng)an;
(2)求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目: 來(lái)源: 題型:

函數(shù)f(x)=2x2-lnx的單調(diào)減區(qū)間是
 

查看答案和解析>>

科目: 來(lái)源: 題型:

分別求直線y=kx與雙曲線2x2-y2=2(1)沒(méi)有交點(diǎn)(2)有兩個(gè)交點(diǎn)(3)只有一個(gè)交點(diǎn)時(shí)斜率k的取值范圍.

查看答案和解析>>

科目: 來(lái)源: 題型:

已知函數(shù)f(x)=2sin2xcos2
φ
2
+cos2xsinφ-sin2x(0<φ<π)圖象的一條對(duì)稱軸為x=
π
3

(Ⅰ)求φ的值;
(Ⅱ)若存在x0∈[-
π
3
,
π
6
]使得|f(x0)-m|≤
1
2
成立,求實(shí)數(shù)m的取值范圍;
(Ⅲ)已知函數(shù)g(x)=|f(
ωx
2
-
12
)|+|cosωx|在區(qū)間[0,1]上恰有50次取到最大值,求正數(shù)ω的取值范圍.

查看答案和解析>>

科目: 來(lái)源: 題型:

已知x>0,y>0,
(1)若2x+y=1,求
1
x
+
1
y
的最小值.
(2)若x+8y-xy=0,求xy的最小值.

查看答案和解析>>

科目: 來(lái)源: 題型:

已知數(shù)列{an}為等差數(shù)列,a3=5,a7=13,數(shù)列{bn}的前n項(xiàng)和為Sn,且有Sn=2bn-1.
1)求{an}、{bn}的通項(xiàng)公式;
2)若cn=anbn,{cn}的前n項(xiàng)和為Tn,求Tn

查看答案和解析>>

同步練習(xí)冊(cè)答案