相關(guān)習(xí)題
 0  208750  208758  208764  208768  208774  208776  208780  208786  208788  208794  208800  208804  208806  208810  208816  208818  208824  208828  208830  208834  208836  208840  208842  208844  208845  208846  208848  208849  208850  208852  208854  208858  208860  208864  208866  208870  208876  208878  208884  208888  208890  208894  208900  208906  208908  208914  208918  208920  208926  208930  208936  208944  266669 

科目: 來源: 題型:

四棱錐P-ABCD底面是平行四邊形,面PAB⊥面ABCD,PA=PB=AB=
1
2
AD,∠BAD=60°,E,F(xiàn)分別為AD,PC的中點(diǎn).
(1)求證:EF∥平面PAB;
(2)求二面角D-PA-B的余弦值.

查看答案和解析>>

科目: 來源: 題型:

已知數(shù)列{an}的前n項(xiàng)和Sn=n2+bn(b為常數(shù)),且對(duì)于任意的k∈N*,ak,a2k,a4k構(gòu)成等比數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)數(shù)列{
1
anan+1
}的前n項(xiàng)和為Tn,求使不等式Tn
3
13
成立的n的最大值.

查看答案和解析>>

科目: 來源: 題型:

已知向量
a
=(1+
1
tanx
,msin(x+
π
4
)),
b
=(sin2x,sin(x-
π
4
)),記函數(shù)f(x)=
a
b
,求:
(1)當(dāng)m=0時(shí),求f(x)在區(qū)間[
π
8
,
4
]上的值域;
(2)當(dāng)tanα=2時(shí),f(α)=
3
5
,求m的值.

查看答案和解析>>

科目: 來源: 題型:

已知中心在原點(diǎn),焦點(diǎn)在x軸上的橢圓C的長(zhǎng)半軸長(zhǎng)為2,且經(jīng)過點(diǎn)M(1,
3
2
);過點(diǎn)P(2,1)的直線l與橢圓C相交于不同的兩點(diǎn)A,B.
(Ⅰ)求橢圓C的方程;
(Ⅱ)是否存在直線l,滿足
PA
PB
=
PM
2,若存在,求出直線l的方程;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目: 來源: 題型:

(1)若f(x)的定義域?yàn)椋?1,1),求f(x-1)的定義域.
(2)若f(x+1)的定義域?yàn)椋?,1),求f(x)的定義域.

查看答案和解析>>

科目: 來源: 題型:

求下列函數(shù)的定義域和值域:
(1)y=2 (
1
x-1
)
;
(2)y=3
1-x

(3)y=5-x-1.
因?yàn)?-x>0,所以5-x-1>-1,所以函數(shù)的值域?yàn)椋?1,+∞).

查看答案和解析>>

科目: 來源: 題型:

如圖,三棱錐V-ABC中,VA=VB=AC=BC=2VC,∠ACB=120°.
(1)求證:AB⊥VC;
(2)求二面角V-AB-C的度數(shù).

查看答案和解析>>

科目: 來源: 題型:

已知函數(shù)f(x)=Acos(ωx+φ),(A>0,ω>0,|φ|<
π
2
)的部分圖象如圖,
(1)求f(x)的解析式,并求單調(diào)遞增區(qū)間
(2)若m(x)=f(x+
π
12
),n(x)=sinx,問是否存在x0∈(
π
6
,
π
4
),使得m(x0),n(x0),m(x0)×n(x0)按某種順序排成等差數(shù)列,若存在,試確定x0的個(gè)數(shù),若不存在,說明理由.

查看答案和解析>>

科目: 來源: 題型:

已知函數(shù)y=f(x)的圖象是由y=sinx圖象經(jīng)過如下三個(gè)步驟變化得到的:
①將y=sinx的圖象的縱坐標(biāo)不變,橫坐標(biāo)縮短為原來的
1
2
;
②將①中圖象整體向左平移
π
6
個(gè)單位;
③將②中的圖象的橫坐標(biāo)不變,縱坐標(biāo)伸長(zhǎng)為原來的2倍.
(I)求f(x)的單調(diào)遞增區(qū)間;
(Ⅱ)在△ABC中,a、b、c分別為角A、B、C的對(duì)邊,若f(A)=
3
,a=
2
,b+c=
6
,求△ABC面積.

查看答案和解析>>

科目: 來源: 題型:

已知向量
a
=(1,2),
b
=(2,-2).
(1)設(shè)
c
=4
a
+
b
,求(
b
c
a
;
(2)求向量
a
b
方向上的投影.

查看答案和解析>>

同步練習(xí)冊(cè)答案