相關(guān)習題
 0  208629  208637  208643  208647  208653  208655  208659  208665  208667  208673  208679  208683  208685  208689  208695  208697  208703  208707  208709  208713  208715  208719  208721  208723  208724  208725  208727  208728  208729  208731  208733  208737  208739  208743  208745  208749  208755  208757  208763  208767  208769  208773  208779  208785  208787  208793  208797  208799  208805  208809  208815  208823  266669 

科目: 來源: 題型:

如圖,平行四邊形ABCD中,E、F分別是BC,DC的中點,若
AB
=
a
AD
=
b
,試用
a
,
b
,表示
DE
、
BF

查看答案和解析>>

科目: 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1({a>b>0})的離心率e=
3
2
,直線l:y=x+
2
與以原點為圓心,橢圓的短半軸為半徑的圓O相切.
(1)求橢圓C的標準方程;
(2)設直線x=my+1與橢圓C交于P,Q兩點,直線A1R與A2Q交于點S,其中A1,A2為橢圓C的左、右頂點.問當m變化時,點S是否恒在一條直線上?若是,請寫出這條直線的方程,并證明你的結(jié)論;若不是,請說明理由.

查看答案和解析>>

科目: 來源: 題型:

已知函數(shù)f(x)=blnx,g(x)=ax2-x(a∈R).
(1)若曲線f(x)與g(x)在公共點A(1,0)處有相同的切線,求實數(shù)a,b的值;
(2)若b=1,設函數(shù)u(x)=g(x)-f(x),試討論函數(shù)u(x)的單調(diào)性;
(3)若a=1,b>2e,求方程f(x)-g(x)=x在區(qū)間(1,eb)內(nèi)實根的個數(shù)(其中e為自然對數(shù)的底數(shù)).

查看答案和解析>>

科目: 來源: 題型:

閱讀材料,解答問題.
例:用圖象法解一元二次不等式x2-2x-3>0.
解:設y=x2-2x-3,則y是x的二次函數(shù).∵a=1>0,∴拋物線開口向上.
又當y=0時,x2-2x-3=0,解得x1=-1,x2=3.
由此得拋物線y=x2-2x-3的大致圖象如圖所示:
觀察函數(shù)圖象可知:當x<-1或x>3時,y>0.
∴x2-2x-3>0的解集是:x<-1或x>3.
(1)觀察圖象,直接寫出一元二次不等式:x2-2x-3<0的解集是
 
;
(2)仿照上例,用圖象法解一元二次不等式:x2-ax-2a2>0
(3)仿照上例,用圖象法解一元二次不等式:ax2-(a+2)x+2>0.

查看答案和解析>>

科目: 來源: 題型:

如圖,在△ABC中,∠ACB是直角,D是AB的中點,F(xiàn)是CD的中點,求
AF
FE
的值.

查看答案和解析>>

科目: 來源: 題型:

已知線段AB的端點B的坐標為(1,3),端點A在圓C:(x+1)2+y2=4上運動.
(1)求線段AB的中點M的軌跡;
(2)過B點的直線L與圓C有兩個交點A,D.當CA⊥CD時,求L的斜率.

查看答案和解析>>

科目: 來源: 題型:

函數(shù)f(x)=2x2-ax-3是偶函數(shù).
(1)試確定a的值,及此時的函數(shù)解析式;
(2)證明函數(shù)f(x)在區(qū)間(-∞,0)上是減函數(shù);
(3)當x∈[-2,0]時,求函數(shù)f(x)=2x2-ax-3的值域.

查看答案和解析>>

科目: 來源: 題型:

中心在原點,焦點在x軸上的橢圓C的焦距為2,兩準線間的距離為10.設A(5,0),過點A作直線l交橢圓C于P,Q兩點,過點P作x軸的垂線交橢圓C于另一點S.
(1)求橢圓C的方程;
(2)求證直線SQ過x軸上一定點B;
(3)若過點A作直線與橢圓C只有一個公共點D,求過B,D兩點,且以AD為切線的圓的方程.

查看答案和解析>>

科目: 來源: 題型:

學校在高二開設了當代戰(zhàn)爭風云、投資理財、汽車模擬駕駛與保養(yǎng)、硬筆書法共4門選修課,每個學生必須且只需選修1門選修課,對于該年級的甲、乙、丙3名學生.
(Ⅰ)求這3名學生選擇的選修課互不相同的概率;
(Ⅱ)求恰有2門選修課沒有被這3名學生選擇的概率.

查看答案和解析>>

科目: 來源: 題型:

(1)求右焦點坐標是(2,0),且經(jīng)過點(-2,-
2
)的橢圓的標準方程.
(2)已知雙曲線與橢圓
x2
49
+
y2
24
=1共焦點,且以y=±
4
3
x為漸近線,求雙曲線方程.

查看答案和解析>>

同步練習冊答案