相關(guān)習(xí)題
 0  208019  208027  208033  208037  208043  208045  208049  208055  208057  208063  208069  208073  208075  208079  208085  208087  208093  208097  208099  208103  208105  208109  208111  208113  208114  208115  208117  208118  208119  208121  208123  208127  208129  208133  208135  208139  208145  208147  208153  208157  208159  208163  208169  208175  208177  208183  208187  208189  208195  208199  208205  208213  266669 

科目: 來源: 題型:

已知全集U=R,集合M={x|x>2},N={x|
1
2
<log2x<2},P={x|x≤a-1}.
(1)求如圖陰影部分表示的集合;
(2)若N⊆P,求實數(shù)a的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

如圖,在直三棱柱(側(cè)棱垂直于底面)ABC-A1B1C1中,∠ACB=90°,CB=1,CA=
3
,AA1=
6
,M為側(cè)棱CC1上一點,AM⊥BA1
(Ⅰ)求證:AM⊥平面A1BC;
(Ⅱ)求二面角B-AM-C的大;
(Ⅲ)求點C到平面ABM的距離.

查看答案和解析>>

科目: 來源: 題型:

(I)畫出程序框圖:求432的所有正數(shù)約數(shù)(不要求寫算法步驟,只畫程序框圖);
(Ⅱ)事實上,432的所有正數(shù)約數(shù)從小到大依次為:1,2,3,4,6…,432;換個寫法,這些約數(shù)從小到大依次是:20×30,21×30,20×31,22×30,21×31,…,24×33.試求出所有這些約數(shù)的和.

查看答案和解析>>

科目: 來源: 題型:

已知集合A={x|log2(x-1)<1},集合B={x|x2-ax-2a2<0,a∈R},
(1)當(dāng)a=1時,求集合A∩B;
(2)若A∩B=A,求實數(shù)a的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

已知函數(shù)
a
=(cosx,
1
2
),
b
=(
3
sinx,cos2x),x∈R,設(shè)函數(shù)f(x)=
a
b
-
1
2

(Ⅰ)求f(x)的最小正周期及單調(diào)遞減區(qū)間;
(Ⅱ)當(dāng)x∈(0,
3
)時,求f(x)的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

已知函數(shù)f(x)=x2-ax+2,g(x)=ax+2
(1)若關(guān)于x的方程f(x)=g(x)在(1,2)內(nèi)恰有一解,求a的取值范圍;
(2)設(shè)h(x)=
f(x),f(x)≥g(x)
g(x),f(x)<g(x)
,求h(x)的最小值;
(3)定義:已知函數(shù)T(x)在[m,n](m<n)上的最小值為t,若t≤m恒成立,則稱函數(shù)T(x)在[m,n](m<n)上具有“DK”性質(zhì).如果f(x)在[a,a+1]上具有“DK”性質(zhì),求a的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

設(shè)函數(shù)y=f(x),x∈R,x≠0
(1)若a>0且a≠1,f(logax)=x-
1
x
,求f(x)的解析式,并判斷f(x)的奇偶性.
(2)若f(x)=x+
1
x
,判斷函數(shù)f(x)在區(qū)間(0,+∞)上的單調(diào)性并加以證明.

查看答案和解析>>

科目: 來源: 題型:

設(shè)函數(shù)f(x)=ax3+
3
2
(2a-1)x2-6x(a∈R)
(1)當(dāng)a=
1
3
時,求f(x)的極大值和極小值;
(2)當(dāng)a>0時,函數(shù)f(x)在區(qū)間(-2,3)上是減函數(shù),求實數(shù)a的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

已知△ABC中,角A、B、C的對邊分別a、b、c,a=1,A+C=2B,△ABC的面積S=
3
3
4

(1)求b的長;
(2)求sin(
π
2
-2C)的值.

查看答案和解析>>

科目: 來源: 題型:

已知函數(shù)f(x)=
x+a
x2+1
是奇函數(shù).
(1)求函數(shù)f(x)的解析式;
(2)判斷f(x)在(1,+∞)上的單調(diào)性,并用定義加以證明.

查看答案和解析>>

同步練習(xí)冊答案