相關(guān)習(xí)題
 0  203316  203324  203330  203334  203340  203342  203346  203352  203354  203360  203366  203370  203372  203376  203382  203384  203390  203394  203396  203400  203402  203406  203408  203410  203411  203412  203414  203415  203416  203418  203420  203424  203426  203430  203432  203436  203442  203444  203450  203454  203456  203460  203466  203472  203474  203480  203484  203486  203492  203496  203502  203510  266669 

科目: 來源: 題型:

計(jì)算:
(1)log5100-log54+(lg3+lg
1
3
2
(2)7
33
-3
324
-6
3
1
9
+
43
33

查看答案和解析>>

科目: 來源: 題型:

設(shè)函數(shù)f(x)=ax2-lnx,其中a>
1
2

(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)設(shè)f(x)的最小值為g(a),證明:函數(shù)g(x)沒有零點(diǎn).

查看答案和解析>>

科目: 來源: 題型:

設(shè)函數(shù)f(x)=(x2+2x-2)ex,求f(x)的極大值.

查看答案和解析>>

科目: 來源: 題型:

已知f(x)=ex+x2-x;
(1)求f(x)的單調(diào)區(qū)間;
(2)若g(x)與f(x)的圖象關(guān)于y軸對(duì)稱,寫出g(x)的表達(dá)式,并比較g(x)與f(x)的大;
(3)若f(x1)=f(x2),求證:x1+x2<0.

查看答案和解析>>

科目: 來源: 題型:

已知點(diǎn)P在直線x+3y-1=0上,點(diǎn)Q在直線x+3y+3=0上,PQ中點(diǎn)為M(x0,y0),且y0≥x0+2,則
y0
x0
的取值范圍為(  )
A、(-
1
3
,-
1
7
)
B、(-∞,-
1
3
]∪[-
1
7
,+∞)
C、(-
1
3
,
1
7
]
D、(-
1
3
,-
1
7
]

查看答案和解析>>

科目: 來源: 題型:

已知P:關(guān)于x的方程x2+(m-1)x+1=0在區(qū)間(0,2)上有兩個(gè)相異的零點(diǎn);Q:函數(shù)g(x)=
1
3
x3+mx+m在(-∞,+∞)上有極值.若P和Q有且只有一個(gè)正確,求m的范圍.

查看答案和解析>>

科目: 來源: 題型:

已知正方形ABCD,邊長(zhǎng)為1,過D作PD⊥平面ABCD,且PD=2,E,F(xiàn)分別是AB和BC的中點(diǎn).
(1)求直線AC到平面PEF的距離;
(2)求直線PB與平面PEF所成角的余弦值.

查看答案和解析>>

科目: 來源: 題型:

函數(shù)y=Acos(ωx+φ)在一個(gè)周期內(nèi)的圖象如下,此函數(shù)的解析式為( 。
A、y=2cos(2x+
π
6
B、y=2cos(2x-
π
6
C、y=2cos(
x
2
-
π
3
D、y=2cos(2x+
π
3

查看答案和解析>>

科目: 來源: 題型:

正方體ABCD-A1B1C1D1為棱長(zhǎng)為1,動(dòng)點(diǎn)P,Q分別在棱BC,CC1上,過點(diǎn)A,P,Q的平面截該正方體所得的截面記為S,設(shè)BP=x,CQ=y,其中x,y∈[0,1],下列命題正確的是
 
.(寫出所有正確命題的編號(hào))
①當(dāng)x=0時(shí),S為矩形,其面積最大為1;
②當(dāng)x=y=
1
2
時(shí),S為等腰梯形;
③當(dāng)x=
1
2
,y∈(
1
2
,1)時(shí),設(shè)S與棱C1D1的交點(diǎn)為R,則RD1=2-
1
y
;
④當(dāng)y=1時(shí),以B1為頂點(diǎn),S為底面的棱錐的體積為定值
1
3

查看答案和解析>>

科目: 來源: 題型:

已知函數(shù)f(x)=Asin(ωx+φ) (A>0,ω>0,|φ|<π)的一段圖象(如圖)所示.
(1)求函數(shù)的解析式;
(2)寫出這個(gè)函數(shù)的單調(diào)增區(qū)間;
(3)若x∈[-
π
6
π
3
]時(shí),函數(shù)g(x)=f(x)+m的最小值為2,試求出函數(shù)g(x)的最大值并求出此時(shí)x的取值.

查看答案和解析>>

同步練習(xí)冊(cè)答案