相關(guān)習(xí)題
 0  201120  201128  201134  201138  201144  201146  201150  201156  201158  201164  201170  201174  201176  201180  201186  201188  201194  201198  201200  201204  201206  201210  201212  201214  201215  201216  201218  201219  201220  201222  201224  201228  201230  201234  201236  201240  201246  201248  201254  201258  201260  201264  201270  201276  201278  201284  201288  201290  201296  201300  201306  201314  266669 

科目: 來(lái)源: 題型:

如圖,AB為圓O的直徑,點(diǎn)E、F在圓O上,AB∥EF,矩形ABCD的邊BC垂直于圓O所在的平面.
(1)求證:AF⊥平面CBF;
(2)設(shè)FC的中點(diǎn)為M,求證:OM∥平面DAF.

查看答案和解析>>

科目: 來(lái)源: 題型:

如圖,在棱長(zhǎng)為a的正方體ABCD-A1B1C1D1,E,F(xiàn),P,Q分別是BC,C1D1,AD1,BD的中點(diǎn),求證:
(1)PQ∥平面DCC1D1
(2)EF∥平面BB1D1D.

查看答案和解析>>

科目: 來(lái)源: 題型:

如圖ABCD是菱形,PA⊥平面ABCD,E、F分別是PC、AB的中點(diǎn).
(1)求證:BD⊥平面PAC
(2)求證:EF∥平面PAD.

查看答案和解析>>

科目: 來(lái)源: 題型:

如圖,已知A1B1C1-ABC是正三棱柱(底面為正三角形,且側(cè)棱垂直底面),D是AC的中點(diǎn).求證:AB1∥平面DBC1

查看答案和解析>>

科目: 來(lái)源: 題型:

在四棱錐P-ABCD中,底面ABCD是正方形,E,F(xiàn)分別是PC,AB的中點(diǎn),平面PAD⊥底面ABCD
(1)求證:EF∥平面PAD;
(2)求證:AB⊥平面PAD.

查看答案和解析>>

科目: 來(lái)源: 題型:

如圖,已知向量
OA
=
a
,
OB
=
b
OC
=
c
,可構(gòu)成空間向量的一個(gè)基底,若
a
=(a1,a1,a3),
b
=(b1,b2,b3),
c
=(c1,c2,c3),在向量已有的運(yùn)算法則的基礎(chǔ)上,新定義一種運(yùn)算a×b=(a2b3-b2a3,a3b1-a1b3,a1b2-a2b1),顯然
a
×
b
的結(jié)果仍為一個(gè)向量,記作p.
(1)求證:向量
p
為平面OAB的法向量;
(2)求證:以O(shè)A,OB為邊的平行四邊形OADB的面積等于|
a
×
b
|;
(3)將四邊形OADB按向量c平移,得到一個(gè)平行六面體OADB-CA1D1B1,是判斷平行六面體的體積V與(
a
×
b
)•
c
的大。

查看答案和解析>>

科目: 來(lái)源: 題型:

a
=(1,5,-1),
b
=(-2,3,5)且(k
a
+
b
)⊥(
a
-3
b
),則k=(  )
A、
103
3
B、
104
3
C、
106
3
D、35

查看答案和解析>>

科目: 來(lái)源: 題型:

已知向量
a
=(1,1,0),
b
=(-1,0,2),且k
a
+
b
b
互相垂直,則k的值是( 。
A、-5
B、
1
5
C、
3
5
D、5

查看答案和解析>>

科目: 來(lái)源: 題型:

如圖,在四棱錐S-ABCD中,底面ABCD是正方形,SA⊥底面ABCD,SA=AB=2,點(diǎn)M是SD的中點(diǎn),AN⊥SC,且交SC于點(diǎn)N.
(Ⅰ)求證:SB∥平面ACM;
(Ⅱ)求證:直線SC⊥平面AMN;
(Ⅲ)求直線CM與平面AMN所成角的余弦值.

查看答案和解析>>

科目: 來(lái)源: 題型:

已知四棱錐P-ABCD,底面ABCD是∠A=60°,邊長(zhǎng)為a的菱形,又PD⊥底ABCD,且PD=CD,點(diǎn)M、N分別是棱AD、PC的中點(diǎn).
(1)證明:DN∥平面PMB;
(2)證明:平面PMB⊥平面PAD;
(3)求直線PB與平面ABCD所成的角.

查看答案和解析>>

同步練習(xí)冊(cè)答案