相關(guān)習(xí)題
 0  200066  200074  200080  200084  200090  200092  200096  200102  200104  200110  200116  200120  200122  200126  200132  200134  200140  200144  200146  200150  200152  200156  200158  200160  200161  200162  200164  200165  200166  200168  200170  200174  200176  200180  200182  200186  200192  200194  200200  200204  200206  200210  200216  200222  200224  200230  200234  200236  200242  200246  200252  200260  266669 

科目: 來(lái)源: 題型:

已知集合A={x|x2-x-2<0},B={x|y=lg
1-x
x+2
},在區(qū)間(-3,3)上任取一實(shí)數(shù)x,則x∈A∩B的概率為( 。
A、
1
8
B、
1
4
C、
1
3
D、
1
12

查看答案和解析>>

科目: 來(lái)源: 題型:

sin330°+(
2
-1)0+3 log32=
 

查看答案和解析>>

科目: 來(lái)源: 題型:

命題“存在x∈R,使得
x2+1
+
1-x2
=0”的否定是
 

查看答案和解析>>

科目: 來(lái)源: 題型:

復(fù)數(shù)
1
1-i
的共軛復(fù)數(shù)為( 。
A、
1
2
+
1
2
i
B、-
1
2
-
1
2
i
C、
1
2
-
1
2
i
D、-
1
2
+
1
2
i

查看答案和解析>>

科目: 來(lái)源: 題型:

已知函數(shù)f(x)=
1
2
x2+kx+1,g(x)=(x+1)ln(x+1),h(x)=f(x)+g′(x).
(Ⅰ)若函數(shù)g(x)的圖象在原點(diǎn)處的切線l與函數(shù)f(x)的圖象相切,求實(shí)數(shù)k的值;
(Ⅱ)若h(x)在[0,2]上單調(diào)遞減,求實(shí)數(shù)k的取值范圍;
(Ⅲ)若對(duì)于?t∈[0,
e
-1],總存在x1,x2∈(-1,4),且x1≠x2滿f(xi)=g(t)(i=1,2),其中e為自然對(duì)數(shù)的底數(shù),求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目: 來(lái)源: 題型:

已知函數(shù)g(x)是實(shí)數(shù)2a與
-4a
x+2
的等差中項(xiàng),函數(shù)f(x)=ln(1+x)-g(x)
(1)當(dāng)a=0時(shí),求曲線y=f(x)在原點(diǎn)處的切線方程;
(2)當(dāng)a>0時(shí),討論函數(shù)f(x)在區(qū)間(0,+∞)上的單調(diào)性;
(3)證明不等式
1
3
+
1
5
+…+
1
2n+1
<ln
n+1
對(duì)任意n∈N*成立.

查看答案和解析>>

科目: 來(lái)源: 題型:

復(fù)數(shù)
2+i
2-i
(i為虛數(shù)單位)的虛部為( 。
A、
3
5
B、
4
5
C、
3
5
i
D、
4
5
i

查看答案和解析>>

科目: 來(lái)源: 題型:

復(fù)數(shù)z=
1
i
在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)的坐標(biāo)為( 。
A、(0,-1)
B、(0,1)
C、(-1,0)
D、(1,0)

查看答案和解析>>

科目: 來(lái)源: 題型:

復(fù)數(shù)i(2-i)=(  )
A、1+2iB、-1+2i
C、2+iD、2-i

查看答案和解析>>

科目: 來(lái)源: 題型:

某大學(xué)準(zhǔn)備在開(kāi)學(xué)時(shí)舉行一次大學(xué)一年級(jí)學(xué)生座談會(huì),擬邀請(qǐng)20名來(lái)自本校機(jī)械工程學(xué)院、海洋學(xué)院、醫(yī)學(xué)院、經(jīng)濟(jì)學(xué)院的學(xué)生參加,各學(xué)院邀請(qǐng)的學(xué)生數(shù)如下表所示:
學(xué)院機(jī)械工程學(xué)院海洋學(xué)院醫(yī)學(xué)院經(jīng)濟(jì)學(xué)院
人數(shù)4646
(Ⅰ)從這20名學(xué)生中隨機(jī)選出3名學(xué)生發(fā)言,求這3名學(xué)生中任意兩個(gè)均不屬于同一學(xué)院的概率;
(Ⅱ)從這20名學(xué)生中隨機(jī)選出3名學(xué)生發(fā)言,設(shè)來(lái)自醫(yī)學(xué)院的學(xué)生數(shù)為ξ,求隨機(jī)變量ξ的概率分布列和數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊(cè)答案