科目: 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專題提升訓(xùn)練5練習(xí)卷(解析版) 題型:填空題
已知函數(shù)f(x)=x-,g(x)=x2-2ax+4,若任意x1∈[0,1],存在x2∈[1,2],使f(x1)≥g(x2),則實(shí)數(shù)a的取值范圍是______.
查看答案和解析>>
科目: 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專題提升訓(xùn)練5練習(xí)卷(解析版) 題型:解答題
設(shè)函數(shù)f(x)=ax-(1+a2)x2,其中a>0,區(qū)間I={x|f(x)>0}.
(1)求I的長度(注:區(qū)間(α,β)的長度定義為β-α);
(2)給定常數(shù)k∈(0,1),當(dāng)1-k≤a≤1+k時,求I長度的最小值.
查看答案和解析>>
科目: 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專題提升訓(xùn)練5練習(xí)卷(解析版) 題型:解答題
已知x=3是函數(shù)f(x)=aln(1+x)+x2-10x的一個極值點(diǎn).
(1)求a;
(2)求函數(shù)f(x)的單調(diào)區(qū)間;
(3)若直線y=b與函數(shù)y=f(x)的圖象有3個交點(diǎn),求b的取值范圍.
查看答案和解析>>
科目: 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專題提升訓(xùn)練5練習(xí)卷(解析版) 題型:解答題
已知函數(shù)f(x)=ex-ln(x+m).
(1)設(shè)x=0是f(x)的極值點(diǎn),求m,并討論f(x)的單調(diào)性;
(2)當(dāng)m≤2時,證明f(x)>0.
查看答案和解析>>
科目: 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專題提升訓(xùn)練6練習(xí)卷(解析版) 題型:選擇題
將函數(shù)y=sin的圖象上所有點(diǎn)的橫坐標(biāo)伸長到原來的2倍(縱坐標(biāo)不變),再將所得圖象向左平移個單位,則所得函數(shù)圖象對應(yīng)的解析式為( ).
A.y=sin B.y=sin
C.y=sinx D.y=sin
查看答案和解析>>
科目: 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專題提升訓(xùn)練6練習(xí)卷(解析版) 題型:選擇題
已知函數(shù)f(x)=Acos(ωx+φ)(A>0,ω>0,φ∈R),則“f(x)是奇函數(shù)”是“φ=”的( ).
A.充分不必要條件 B.必要不充分條件
C.充分必要條件 D.既不充分也不必要條件
查看答案和解析>>
科目: 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專題提升訓(xùn)練6練習(xí)卷(解析版) 題型:選擇題
已知函數(shù)f(x)=2sin(ωx+φ)(ω>0)的圖象關(guān)于直線x=對稱,且f=0,則ω的最小值為( ).
A.2 B.4 C.6 D.8
查看答案和解析>>
科目: 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專題提升訓(xùn)練6練習(xí)卷(解析版) 題型:選擇題
將函數(shù)y=cos x+sin x(x∈R) 的圖象向左平移m(m>0)個單位長度后,所得到的圖象關(guān)于y軸對稱,則m的最小值是( ).
A. B. C. D.
查看答案和解析>>
科目: 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專題提升訓(xùn)練6練習(xí)卷(解析版) 題型:選擇題
已知函數(shù)f(x)=sin (2x+φ),其中φ為實(shí)數(shù),若f(x)≤ 對x∈R恒成立,且<f(π),則下列結(jié)論正確的是( ).
A.=-1
B.f>f
C.f(x)是奇函數(shù)
D.f(x)的單調(diào)遞增區(qū)間是 (k∈Z)
查看答案和解析>>
科目: 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專題提升訓(xùn)練6練習(xí)卷(解析版) 題型:填空題
若sin=,則sin=______.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com