相關(guān)習(xí)題
 0  155807  155815  155821  155825  155831  155833  155837  155843  155845  155851  155857  155861  155863  155867  155873  155875  155881  155885  155887  155891  155893  155897  155899  155901  155902  155903  155905  155906  155907  155909  155911  155915  155917  155921  155923  155927  155933  155935  155941  155945  155947  155951  155957  155963  155965  155971  155975  155977  155983  155987  155993  156001  266669 

科目: 來源: 題型:解答題

某中學(xué)在高一開設(shè)了數(shù)學(xué)史等4門不同的選修課,每個學(xué)生必須選修,且只能從中選一門。該校高一的3名學(xué)生甲、乙、丙對這4門不同的選修課的興趣相同。
(1)求恰有2門選修課這3個學(xué)生都沒有選擇的概率;
(2)設(shè)隨機(jī)變量為甲、乙、丙這三個學(xué)生選修數(shù)學(xué)史這門課的人數(shù),求的分布列及期望,方差.

查看答案和解析>>

科目: 來源: 題型:解答題

近年空氣質(zhì)量逐步惡化,霧霾天氣現(xiàn)象出現(xiàn)增多,大氣污染危害加重,大氣污染可引起心悸、呼吸困難等心肺疾。疄榱私饽呈行姆渭膊∈欠衽c性別有關(guān),在某醫(yī)院隨機(jī)對入院的50人進(jìn)行了問卷調(diào)查得到了如下的列聯(lián)表:

 
患心肺疾病
不患心肺疾病
合計

 
5
 

10
 
 
合計
 
 
50
 
已知在全部50人中隨機(jī)抽取1人,抽到患心肺疾病的人的概率為.
(1)請將上面的列聯(lián)表補(bǔ)充完整;
(2)是否有99.5%的把握認(rèn)為患心肺疾病與性別有關(guān)?說明你的理由;
臨界值表供參考:
P(K2≥k)
0.15
0.10
0.05
0.025
0.010
0.005
0.001
k
2.072
2.706
3.841
5.024
6.635
7.879
10.828
 
參考公式:其中

查看答案和解析>>

科目: 來源: 題型:解答題

已知5個乒乓球,其中3個新的,2個舊的,每次取1個,不放回的取兩次,  
求:(1)第一次取到新球的概率.
(2)第二次取到新球的概率.
(3)在第一次取到新球的條件下第二次取到新球的概率.

查看答案和解析>>

科目: 來源: 題型:解答題

兩人相約在7點(diǎn)到8點(diǎn)在某地會面,先到者等候另一個人20分鐘方可離去.試求這兩人能會面的概率?

查看答案和解析>>

科目: 來源: 題型:解答題

小波以游戲方式?jīng)Q定是去打球、唱歌還是去下棋。游戲規(guī)則為:以O(shè)為起點(diǎn),再從(如圖)這六個點(diǎn)中任取兩點(diǎn)分別為終點(diǎn)得到兩個向量,記這兩個向量的數(shù)量積為,若就去打球,若就去唱歌,若就去下棋。
(1)寫出數(shù)量積的所有可能值;
(2)分別求小波去下棋的概率和不去唱歌的概率。

查看答案和解析>>

科目: 來源: 題型:解答題

(2013•天津)一個盒子里裝有7張卡片,其中有紅色卡片4張,編號分別為1,2,3,4; 白色卡片3張,編號分別為2,3,4.從盒子中任取4張卡片 (假設(shè)取到任何一張卡片的可能性相同).
(1)求取出的4張卡片中,含有編號為3的卡片的概率.
(2)再取出的4張卡片中,紅色卡片編號的最大值設(shè)為X,求隨機(jī)變量X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目: 來源: 題型:解答題

名男生和名女生中任選人參加演講比賽,
①求所選人都是男生的概率;
②求所選人恰有名女生的概率;
③求所選人中至少有名女生的概率。

查看答案和解析>>

科目: 來源: 題型:解答題

某學(xué)校一位教師要去某地參加全國數(shù)學(xué)優(yōu)質(zhì)課比賽,已知他乘火車、輪船、汽車、飛機(jī)直接去的概率分別為0.3、0.1、0.2、0.4.
(1)求他乘火車或乘飛機(jī)去的概率;
(2)他不乘輪船去的概率;

查看答案和解析>>

科目: 來源: 題型:解答題

甲、乙兩個籃球運(yùn)動員互不影響地在同一位置投球,命中率分別為,且乙投球次均未命中的概率為
(1)求乙投球的命中率
(2)若甲投球次,乙投球次,兩人共命中的次數(shù)記為,求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目: 來源: 題型:解答題

已知復(fù)數(shù)z=x+yi(x,y∈R)在復(fù)平面上對應(yīng)的點(diǎn)為M.
(1)設(shè)集合P={-4,-3,-2,0},Q={0,1,2},從集合P中隨機(jī)取一個數(shù)作為x,從集合Q中隨機(jī)取一個數(shù)作為y,求復(fù)數(shù)z為純虛數(shù)的概率.
(2)設(shè)x∈[0,3],y∈[0,4],求點(diǎn)M落在不等式組:
所表示的平面區(qū)域內(nèi)的概率.

查看答案和解析>>

同步練習(xí)冊答案