相關習題
 0  149805  149813  149819  149823  149829  149831  149835  149841  149843  149849  149855  149859  149861  149865  149871  149873  149879  149883  149885  149889  149891  149895  149897  149899  149900  149901  149903  149904  149905  149907  149909  149913  149915  149919  149921  149925  149931  149933  149939  149943  149945  149949  149955  149961  149963  149969  149973  149975  149981  149985  149991  149999  266669 

科目: 來源: 題型:解答題

f(x)和g(x)都是定義在同一區(qū)間上的兩個函數(shù),若對任意x∈[1,2],都有|f(x)+g(x)|≤8,則稱f(x)和g(x)是“友好函數(shù)”,設f(x)=ax,g(x)=.
(1)若a∈{1,4},b∈{-1,1,4},求f(x)和g(x)是“友好函數(shù)”的概率;
(2)若a∈[1,4],b∈[1,4],求f(x)和g(x)是“友好函數(shù)”的概率.

查看答案和解析>>

科目: 來源: 題型:解答題

設函數(shù)f(x)=ax2bxc,且f(1)=-,3a>2c>2b,求證:
(1)a>0,且-3<<-;
(2)函數(shù)f(x)在區(qū)間(0,2)內至少有一個零點;
(3)設x1,x2是函數(shù)f(x)的兩個零點,則≤|x1x2|<.

查看答案和解析>>

科目: 來源: 題型:解答題

已知函數(shù)f(x)=.
(1)求函數(shù)f(x)的最小值;
(2)已知m∈R,命題p:關于x的不等式f(x)≥m2+2m-2對任意m∈R恒成立;q:函數(shù)y=(m2-1)x是增函數(shù).若“pq”為真,“pq”為假,求實數(shù)m的取值范圍.

查看答案和解析>>

科目: 來源: 題型:解答題

已知兩函數(shù)f(x)=8x2+16x-k,g(x)=2x3+5x2+4x,其中k為實數(shù).
(1)對任意x∈[-3,3]都有f(x)≤g(x)成立,求k的取值范圍.
(2)存在x∈[-3,3]使f(x)≤g(x)成立,求k的取值范圍.
(3)對任意x1,x2∈[-3,3]都有f(x1)≤g(x2),求k的取值范圍.

查看答案和解析>>

科目: 來源: 題型:解答題

某投資公司投資甲、乙兩個項目所獲得的利潤分別是P(億元)和Q(億元),它們與投資額t(億元)的關系有經驗公式P=,Q=t,今該公司將5億元投資于這兩個項目,其中對甲項目投資x(億元),投資這兩個項目所獲得的總利潤為y(億元).求:
(1)y關于x的函數(shù)表達式.
(2)總利潤的最大值.

查看答案和解析>>

科目: 來源: 題型:解答題

為了保護環(huán)境,發(fā)展低碳經濟,某單位在國家科研部門的支持下,進行技術攻關,新上了把二氧化碳處理轉化為一種可利用的化工產品的項目,經測算,該項目月處理成本y(元)與月處理量x(噸)之間的函數(shù)關系可近似地表示為
y=
且每處理一噸二氧化碳得到可利用的化工產品價值為200元,若該項目不獲利,國家將給予補償.
(1)當x∈[200,300]時,判斷該項目能否獲利?如果獲利,求出最大利潤;如果不獲利,則國家每月至少需要補貼多少元才能使該項目不虧損?
(2)該項目每月處理量為多少噸時,才能使每噸的平均處理成本最低?

查看答案和解析>>

科目: 來源: 題型:解答題

某廠生產某種產品的年固定成本為250萬元,每生產x千件,需另投入成本為C(x),當年產量不足80千件時,C(x)=x2+10x(萬元).當年產量不小于80千件時,C(x)=51x+-1450(萬元).每件商品售價為0.05萬元.通過市場分析,該廠生產的商品能全部售完.
(1)寫出年利潤L(x)(萬元)關于年產量x(千件)的函數(shù)解析式.
(2)年產量為多少千件時,該廠在這一商品的生產中所獲利潤最大?

查看答案和解析>>

科目: 來源: 題型:解答題

已知某物體的溫度θ(單位:攝氏度)隨時間t(單位:分鐘)的變化規(guī)律是:θ=m·2t+21-t(t≥0,且m>0).
(1)如果m=2,求經過多少時間,物體的溫度為5攝氏度.
(2)若物體的溫度總不低于2攝氏度,求m的取值范圍.

查看答案和解析>>

科目: 來源: 題型:解答題

有一種新型的洗衣液,去污速度特別快.已知每投放k(1≤k≤4,且k∈R)個單位的洗衣液在一定量水的洗衣機中,它在水中釋放的濃度y(克/升)隨著時間x(分鐘)變化的函數(shù)關系式近似為y=k·f(x),其中f(x)=若多次投放,則某一時刻水中的洗衣液濃度為每次投放的洗衣液在相應時刻所釋放的濃度之和.根據(jù)經驗,當水中洗衣液的濃度不低于4(克/升)時,它才能起到有效去污的作用.
(1)若只投放一次k個單位的洗衣液,兩分鐘時水中洗衣液的濃度為3(克/升),求k的值;
(2)若只投放一次4個單位的洗衣液,則有效去污時間可達幾分鐘?

查看答案和解析>>

科目: 來源: 題型:解答題

設函數(shù)f(x)=ax2+bx+b-1(a≠0).
(1)當a=1,b=-2時,求函數(shù)f(x)的零點;
(2)若對任意b∈R,函數(shù)f(x)恒有兩個不同零點,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習冊答案