【題目】已知函數(shù).
(1)若,求曲線在點處的切線方程;
(2)求函數(shù)的單調(diào)區(qū)間;
(3)若且,求實數(shù)的取值范圍.
【答案】(1);(2)見解析;(3)
【解析】
(1)代入,再根據(jù)導數(shù)的幾何意義求解即可.
(2)易得,因為,故分與兩種情況分析導數(shù)的正負,從而得出單調(diào)區(qū)間即可.
(3)根據(jù)(2)中的單調(diào)性,分與兩種情況討論的單調(diào)性,并求出最值,再根據(jù)的值域滿足的關(guān)系結(jié)合題意求解即可.
(1)若,則,故,,,
∴所求切線方程為;
(2)函數(shù)的定義域為,,
當時,,函數(shù)在上單調(diào)遞減,
當時,令得,令得,故函數(shù)在單調(diào)遞減,在單調(diào)遞增;
(3)當時,函數(shù)在上單調(diào)遞減,
又,而,不合題意;
當時,由(2)可知,,
(i)當,即時,,不合題意;
(ii)當,即時,,滿足題意;
(iii)當,即時,則,
∵,函數(shù)在單調(diào)遞增,
∴當時,,
又∵函數(shù)的定義域為,
∴,滿足題意.
綜上,實數(shù)的取值范圍為.
科目:高中數(shù)學 來源: 題型:
【題目】在某外國語學校舉行的(高中生數(shù)學建模大賽)中,參與大賽的女生與男生人數(shù)之比為,且成績分布在,分數(shù)在以上(含)的同學獲獎.按女生、男生用分層抽樣的方法抽取人的成績作為樣本,得到成績的頻率分布直方圖如圖所示.
(Ⅰ)求的值,并計算所抽取樣本的平均值(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表);
(Ⅱ)填寫下面的列聯(lián)表,并判斷在犯錯誤的概率不超過的前提下能否認為“獲獎與女生、男生有關(guān)”.
女生 | 男生 | 總計 | |
獲獎 | |||
不獲獎 | |||
總計 | |||
附表及公式:
其中,.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】“工資條里顯紅利,個稅新政人民心”我國自1980年以來,力度最大的一次個人所得稅(簡稱個稅)改革迎來了全面實施的階段.2019年1月1日實施的個稅新政主要內(nèi)容包括:(1)個稅起征點為5000元;(2)每月應(yīng)納稅所得額(含稅)收人個稅起征點專項附加扣除;(3)專項附加扣除包括住房、子女教育和贍養(yǎng)老人等.新舊個稅政策下每月應(yīng)納稅所得額(含稅)計算方法及其對應(yīng)的稅率表如下:
舊個稅稅率表(個稅起征點3500元) | 新個稅稅率表(個稅起征點5000元) | |||
繳稅基數(shù) | 每月應(yīng)納稅所得額(含稅)收入個稅起征點 | 稅率(%) | 每月應(yīng)納稅所得額(含稅)收入個稅起征點專項附加扣除 | 稅率(%) |
1 | 不超過1500元的部分 | 3 | 不超過3000元的部分 | 3 |
2 | 超過1500元至4500元的部分 | 10 | 超過3000元至12000元的部分 | 10 |
3 | 超過4500元至9000元的部分 | 20 | 超過12000元至25000元的部分 | 20 |
4 | 超過9000元至35000元的部分 | 25 | 超過25000元至35000元的部分 | 25 |
5 | 超過35000元至55000元的部分 | 30 | 超過35000元至55000元的部分 | 30 |
… | … | … | … | … |
隨機抽取某市2020名同一收入層級的從業(yè)者的相關(guān)資料,經(jīng)統(tǒng)計分析,預(yù)估他們2019年的人均月收入24000元,統(tǒng)計資料還表明,他們均符合住房專項扣除;同時,他們每人至多只有一個符合子女教育扣除的孩子,并且他們中既不符合子女教育扣除又不符合贍養(yǎng)老人扣除、只符合子女教育扣除但不符合贍養(yǎng)老人扣除、只符合贍養(yǎng)老人扣除但不符合子女教育扣除、既符合子女教育扣除又符合贍養(yǎng)老人扣除的人數(shù)之比是;此外,他們均不符合其他專項附加扣除,新個稅政策下該市的專項附加扣除標準為:住房1000元/月,子女教育每孩1000元/月,贍養(yǎng)老人2000元/月等.假設(shè)該市該收入層級的從業(yè)者都獨自享受專項附加扣除,將預(yù)估的該市該收入層級的從業(yè)者的人均月收入視為其個人月收入,根據(jù)樣本估計總體的思想,解決如下問題:
(1)求在舊政策下該收入層級的從業(yè)者每月應(yīng)納的個稅;
(2)設(shè)該市該收入層級的從業(yè)者2019年月繳個稅為X元,求X的分布列和期望;
(3)根據(jù)新舊個稅方案,估計從2019年1月開始,經(jīng)過多少個月,該市該收入層級的從業(yè)者各月少繳納的個稅之和就超過2019年的人均月收入?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知點S為正方形ABCD所在平面外一點,△SBC是邊長為2的等邊三角形,點E為線段SB的中點.
(1)證明:SD//平面AEC;
(2)若側(cè)面SBC⊥底面ABCD,求平面ACE與平面SCD所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的離心率為,點為其左頂點,點的坐標為,過點作直線與橢圓交于兩點,當垂直于軸時,.
(1)求該橢圓的方程;
(2)設(shè)直線,分別交直線于點,,線段的中點為,設(shè)直線與的斜率分別為,,且,求證:為定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓C:.
(1)求橢圓C的離心率;
(2)設(shè)分別為橢圓C的左右頂點,點P在橢圓C上,直線AP,BP分別與直線相交于點M,N.當點P運動時,以M,N為直徑的圓是否經(jīng)過軸上的定點?試證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),.
(1)若函數(shù)在處的切線與直線平行,求實數(shù)的值;
(2)試討論函數(shù)在區(qū)間上的最大值;
(3)若時,函數(shù)恰有兩個零點,求證:.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com