解:(1)∵拋物線(xiàn)E:y
2=4x的焦點(diǎn)F(1,0),∴橢圓的焦點(diǎn)坐標(biāo)為(±1,0).
由點(diǎn)P在拋物線(xiàn)y
2=4x上,所以P(
![](http://thumb.zyjl.cn/pic5/latex/168.png)
,
![](http://thumb.zyjl.cn/pic5/latex/8691.png)
).
又點(diǎn)P在橢圓C上,所以2a=4,所以a=2,
又c=1,故b=
![](http://thumb.zyjl.cn/pic5/latex/7898.png)
=
![](http://thumb.zyjl.cn/pic5/latex/21.png)
,從而橢圓C的方程為
![](http://thumb.zyjl.cn/pic5/latex/2913.png)
(5分)
(2)聯(lián)立直線(xiàn)與橢圓方程得
![](http://thumb.zyjl.cn/pic5/latex/17609.png)
,消去y可得3x
2+4k
2x
2=12,∴
![](http://thumb.zyjl.cn/pic5/latex/17610.png)
.(7分)
聯(lián)立直線(xiàn)與拋物線(xiàn)得
![](http://thumb.zyjl.cn/pic5/latex/17611.png)
,消去y可得k
2x
2=4x,解得x=0或x=
![](http://thumb.zyjl.cn/pic5/latex/14164.png)
(9分)
∵|MO|=|NQ|,∴N為線(xiàn)段OQ的中點(diǎn),∴
![](http://thumb.zyjl.cn/pic5/latex/17612.png)
=
![](http://thumb.zyjl.cn/pic5/latex/14164.png)
,
化簡(jiǎn)得3k
4-4k
2-3=0,解得k
2=
![](http://thumb.zyjl.cn/pic5/latex/17613.png)
(負(fù)值舍去),故滿(mǎn)足題意的k值有2個(gè).
從而存在過(guò)原點(diǎn)O的兩條直線(xiàn)l滿(mǎn)足題意.(12分)
分析:(1)確定橢圓的焦點(diǎn)坐標(biāo),點(diǎn)P的坐標(biāo),利用點(diǎn)P在橢圓C上,求得a的值,根據(jù)c=1,b=
![](http://thumb.zyjl.cn/pic5/latex/7898.png)
,即可求得橢圓C的方程;
(2)聯(lián)立直線(xiàn)與橢圓方程,可求M的坐標(biāo),聯(lián)立直線(xiàn)與拋物線(xiàn),可求Q的坐標(biāo),根據(jù)|MO|=|NQ|,可得N為線(xiàn)段OQ的中點(diǎn),從而可建立方程,由此可得結(jié)論.
點(diǎn)評(píng):本題考查拋物線(xiàn)的幾何性質(zhì),考查橢圓的標(biāo)準(zhǔn)方程,考查直線(xiàn)與橢圓、拋物線(xiàn)的位置關(guān)系,屬于中檔題.