(1)已知等差數(shù)列,,求的公差;
(2)有三個(gè)數(shù)成等比數(shù)列,它們的和等于14,它們的積等于64,求該數(shù)列的公比.

(1)(2)或2

解析試題分析:(1)    2’
                        4’
                            6’
(2)設(shè)這三個(gè)數(shù)分別為:              7’
                             9’
                                       10’
或2                                    12’
考點(diǎn):等差數(shù)列等比數(shù)列
點(diǎn)評(píng):等差數(shù)列等比數(shù)列問題求解時(shí)常將已知條件轉(zhuǎn)化為首項(xiàng)和公比公差表示,進(jìn)而用基本量求解;三個(gè)數(shù)成等比數(shù)列常設(shè)為,三個(gè)數(shù)成等差數(shù)列常設(shè)為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知等差數(shù)列滿足:,.的前n項(xiàng)和為.
(Ⅰ)求 及
(Ⅱ)若 ,),求數(shù)列的前項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知各項(xiàng)都不相等的等差數(shù)列的前六項(xiàng)和為60,且 的等比中項(xiàng).
(I)求數(shù)列的通項(xiàng)公式;
(II)若數(shù)列的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知數(shù)列{}的前n項(xiàng)和,數(shù)列{}滿足=
(I)求證:數(shù)列{}是等差數(shù)列,并求數(shù)列{}的通項(xiàng)公式;
(Ⅱ)設(shè),數(shù)列的前項(xiàng)和為,求滿足的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)等差數(shù)列{}的前項(xiàng)和為,已知
(Ⅰ) 求數(shù)列{}的通項(xiàng)公式;
(Ⅱ)求數(shù)列{}的前n項(xiàng)和;
(Ⅲ)當(dāng)n為何值時(shí),最大,并求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)為等差數(shù)列,為數(shù)列的前項(xiàng)和,已知.
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)設(shè),求數(shù)列的前項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知{}是等差數(shù)列,其前項(xiàng)和為,{}是等比數(shù)列,且=,.
(1)求數(shù)列{}與{}的通項(xiàng)公式;
(2)記,求滿足不等式的最小正整數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知等差數(shù)列中,首項(xiàng)a1=1,公差d為整數(shù),且滿足數(shù)列滿足項(xiàng)和為
(1)求數(shù)列的通項(xiàng)公式an;
(2)若S2,的等比中項(xiàng),求正整數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)非常數(shù)數(shù)列{an}滿足an+2,n∈N*,其中常數(shù)α,β均為非零實(shí)數(shù),且αβ≠0.
(1)證明:數(shù)列{an}為等差數(shù)列的充要條件是α+2β=0;
(2)已知α=1,β, a1=1,a2,求證:數(shù)列{| an1an1|} (n∈N*,n≥2)與數(shù)列{n} (n∈N*)中沒有相同數(shù)值的項(xiàng).

查看答案和解析>>

同步練習(xí)冊(cè)答案