圓錐曲線
的準(zhǔn)線方程是
解:因為圓錐曲線
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知拋物線C:y=(x+1)
2與圓M:(x-1)2+(
)
2=r2(r>0)有一個公共點,且在A處兩曲線的切線為同一直線l.
(Ⅰ)求r;
(Ⅱ)設(shè)m、n是異于l且與C及M都相切的兩條直線,m、n的交點為D,求D到l的距離。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
點
是曲線
上的一個動點,曲線
在點
處的切線與
軸、
軸分別交于
兩點,點
是坐標(biāo)原點. 給出三個命題:①
;②
的周長有最小值
;③曲線
上存在兩點
,使得
為等腰直角三角形.其中真命題的個數(shù)是
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知橢圓
>b>
的離心率為
且橢圓的一個焦點與拋物線
的焦點重合,斜率為
的直線
過橢圓的上焦點且與橢圓相交于P,Q兩點,線段PQ的垂直平分線與y軸相交于點M(0,m).
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)求m的取值范圍;
(3)試用m表示△MPQ的面積S,并求面積S的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知關(guān)于
的方程
.
(1)若方程
表示圓,求實數(shù)
的取值范圍 ;
(2)若圓
與直線
相交于
兩點,且
,求
的值
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分12分)已知橢圓
(
)的右焦點為
,離心率為
.
(Ⅰ)若
,求橢圓的方程;
(Ⅱ)設(shè)直線
與橢圓相交于
,
兩點,
分別為線段
的中點. 若坐標(biāo)原點
在以
為直徑的圓上,且
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知曲線
上動點
到定點
與定直線
的距離之比為常數(shù)
.
(1)求曲線
的軌跡方程;
(2)若過點
引曲線C的弦AB恰好被點
平分,求弦AB所在的直線方程;
(3)以曲線
的左頂點
為圓心作圓
:
,設(shè)圓
與曲線
交于點
與點
,求
的最小值,并求此時圓
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
在平面直角坐標(biāo)系下,曲線
(
為參數(shù)),曲線
(
為參數(shù)).若曲線
、
有公共點,則實數(shù)
的取值范圍_____.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
.(本小題滿分12分)
在△ABC中,頂點A(-1,0),B(1,0),動點D,E滿足:
①
;②|
|=
|
|=
|
|③
與
共線.
(Ⅰ)求△ABC頂點C的軌跡方程;
(Ⅱ) 若斜率為1直線
l與動點C的軌跡交于M,N兩點,且
·
=0,求直線
l的方程.
查看答案和解析>>