【題目】已知橢圓,以橢圓的頂點(diǎn)為頂點(diǎn)的四邊形的面積為,且該四邊形內(nèi)切圓的半徑為.

1)求橢圓的方程;

2)設(shè)是過(guò)橢圓中心的任意一條弦,直線是線段的垂直平分線,若是直線與橢圓的一個(gè)交點(diǎn),求面積的最小值.

【答案】1;(2.

【解析】

1)由已知條件列出的方程組,解得后得橢圓方程;

2)當(dāng)不在坐標(biāo)軸上時(shí),設(shè)直線的方程為:,設(shè),

代入橢圓方程求出交點(diǎn)坐標(biāo),得弦長(zhǎng),同理得點(diǎn)坐標(biāo)得,然后計(jì)算三角形面積,利用基本不等式得最小值.再求出直線與坐標(biāo)軸重合時(shí),三角形的面積,比較后可得最小值.

1

∴橢圓的標(biāo)準(zhǔn)方程為

2)當(dāng)不在坐標(biāo)軸上時(shí),設(shè)直線的方程為:,設(shè),

同理:,

(當(dāng)且僅當(dāng),即進(jìn)“=”成立)

,

當(dāng)直線與坐標(biāo)軸生重合時(shí),易得,

∴當(dāng)且僅當(dāng)時(shí),面積的最小值為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】隨著年北京冬奧會(huì)臨近,中國(guó)冰雪產(chǎn)業(yè)快速發(fā)展,冰雪運(yùn)動(dòng)人數(shù)快速上升,冰雪運(yùn)動(dòng)市場(chǎng)需求得到釋放,將引領(lǐng)戶外用品行業(yè)市場(chǎng)增長(zhǎng).下面是年至年中國(guó)雪場(chǎng)滑雪人次(萬(wàn)人次)與同比增長(zhǎng)率的統(tǒng)計(jì)圖,則下面結(jié)論中不正確的是(

A.年至年,中國(guó)雪場(chǎng)滑雪人次逐年增加

B.年至年,中國(guó)雪場(chǎng)滑雪人次和同比增長(zhǎng)率均逐年增加

C.年與年相比,中國(guó)雪場(chǎng)滑雪人次的同比增長(zhǎng)率近似相等,所以同比增長(zhǎng)人數(shù)也近似相等

D.年與年相比,中國(guó)雪場(chǎng)滑雪人次增長(zhǎng)率約為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖①,在平面五邊形中,是梯形,,,,是等邊三角形.現(xiàn)將沿折起,連接得如圖②的幾何體.

1)若點(diǎn)的中點(diǎn),求證:平面;

2)若,在棱上是否存在點(diǎn),使得二面角的余弦值為?若存在,求的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱錐的底面為直角梯形,,,,平面平面,點(diǎn)上,且


(Ⅰ)證明:平面平面;

(Ⅱ)當(dāng)異面直線所成角的余弦值為時(shí),求二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),.

)當(dāng)時(shí),求的單調(diào)區(qū)間;

)若的值域?yàn)?/span>,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(本小題滿分14分)已知過(guò)原點(diǎn)的動(dòng)直線與圓 相交于不同的兩點(diǎn),

1)求圓的圓心坐標(biāo);

2)求線段的中點(diǎn)的軌跡的方程;

3)是否存在實(shí)數(shù),使得直線 與曲線只有一個(gè)交點(diǎn)?若存在,求出的取值范圍;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)某大學(xué)的女生體重y(單位:kg)與身高x(單位:cm)具有線性相關(guān)關(guān)系,根據(jù)一組樣本數(shù)據(jù)(xi,yi)(i=1,2,n),用最小二乘法建立的回歸方程為=0.85x-85.71,則下列結(jié)論中不正確的是

A. yx具有正的線性相關(guān)關(guān)系

B. 回歸直線過(guò)樣本點(diǎn)的中心(,

C. 若該大學(xué)某女生身高增加1cm,則其體重約增加0.85kg

D. 若該大學(xué)某女生身高為170cm,則可斷定其體重比為58.79kg

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若函數(shù)處取得極大值或極小值,則稱為函數(shù)的極值點(diǎn).已知函數(shù).

1)當(dāng)時(shí),求的極值;

2)若在區(qū)間上有且只有一個(gè)極值點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知一個(gè)正四面體和一個(gè)正四棱錐,它們的各條棱長(zhǎng)均相等,則下列說(shuō)法:

①它們的高相等;②它們的內(nèi)切球半徑相等;③它們的側(cè)棱與底面所成的線面角的大小相等;④若正四面體的體積為,正四棱錐的體積為,則;⑤它們能拼成一個(gè)斜三棱柱.其中正確的個(gè)數(shù)為(

A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

同步練習(xí)冊(cè)答案