已知橢圓的離心率為分別為橢圓的左、右焦點,若橢圓的焦距為2.
⑴求橢圓的方程;
⑵設(shè)為橢圓上任意一點,以為圓心,為半徑作圓,當(dāng)圓與橢圓的右準(zhǔn)線有公共點時,求△面積的最大值.
. ⑵

試題分析:⑴因為,且,所以.  2分
所以.  4分
所以橢圓的方程為.  6分
⑵設(shè)點的坐標(biāo)為,則
因為,,所以直線的方程為.  8分
由于圓有公共點,所以 的距離小于或等于圓的半徑
因為,所以,  10分
 .
又因為,所以.  12分
解得,又,∴.  14分
當(dāng)時,,所以   16分
點評:中檔題,求橢圓的標(biāo)準(zhǔn)方程,主要運用了橢圓的幾何性質(zhì),a,b,c,e的關(guān)系。曲線關(guān)系問題,往往通過聯(lián)立方程組,得到一元二次方程,運用韋達(dá)定理,簡化解題過程。利用函數(shù)觀點,建立三角形面積的表達(dá)式,確定其最值。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的對稱中心為坐標(biāo)原點,上焦點為,離心率.

(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)軸上的動點,過點作直線與直線垂直,試探究直線與橢圓的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知拋物線的焦點為F2,點F1與F2關(guān)于坐標(biāo)原點對稱,直線m垂直于x軸,垂足為T,與拋物線交于不同的兩點P、Q且.
(1)求點T的橫坐標(biāo);
(2)若以F1,F2為焦點的橢圓C過點.
①求橢圓C的標(biāo)準(zhǔn)方程;
②過點F2作直線l與橢圓C交于A,B兩點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知兩點F1(-1,0)及F2(1,0),點P在以F1、F2為焦點的橢圓C上,且|PF1|、|F1F2|、|PF2|構(gòu)成等差數(shù)列.

(1)求橢圓C的方程;
(2)如圖,動直線l:y=kx+m與橢圓C有且僅有一個公共點,點M,N是直線l上的兩點,且F1M⊥l, F2N⊥l.求四邊形F1MNF2面積S的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓過點,上、下焦點分別為、,
向量.直線與橢圓交于兩點,線段中點為
(1)求橢圓的方程;
(2)求直線的方程;
(3)記橢圓在直線下方的部分與線段所圍成的平面區(qū)域(含邊界)為,若曲線
與區(qū)域有公共點,試求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知橢圓的中心在原點,離心率,且它的一個焦點與拋物線的焦點重合, 則此橢圓方程為
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)是橢圓的左焦點,直線方程為,直線軸交于點,分別為橢圓的左右頂點,已知,且
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)過點且斜率為的直線交橢圓于兩點,求三角形面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

求滿足下列條件的橢圓方程長軸在軸上,長軸長等于12,離心率等于;橢圓經(jīng)過點;橢圓的一個焦點到長軸兩端點的距離分別為10和4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

橢圓的左焦點為, 點在橢圓上, 如果線段的中點軸的
正半軸上, 那么點的坐標(biāo)是         

查看答案和解析>>

同步練習(xí)冊答案