函數(shù)y=f(x)的定義域為[-1,0]∪(0,1]其圖像上任一點P(x,y)滿足x2+y2=1.

①函數(shù)y=f(x)一定是偶函數(shù);

②函數(shù)y=f(x)可能既不是偶函數(shù),也不是奇函數(shù);

③函數(shù)y=f(x)可以是奇函數(shù);

④函數(shù)y=f(x)如果是偶函數(shù),則值域是[0,1)或(-1,0];

⑤函數(shù)y=f(x)值域是(-1,1),則一定是奇函數(shù)

其中正確命題的序號是________(填上所有正確的序號)

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:2002年全國各省市高考模擬試題匯編 題型:044

已知:如圖射線OA為y=kx(k>0,x>0),射線OB為y=-kx(x>0),動點P(x,y)在∠AOx的內(nèi)部,PM⊥OA于M,PN⊥OB于N,四邊形ONPM的面積恰為k.

(Ⅰ)當k為定值時,動點P的縱坐標y是其橫坐標x的函數(shù),求這個函數(shù)y=f(x)的解析式;

(Ⅱ)根據(jù)k的取值范圍,確定y=f(x)的定義域.

查看答案和解析>>

科目:高中數(shù)學 來源:江西省白鷺洲中學2009-2010學年高一下學期第一次月考數(shù)學試題 題型:044

某服裝批發(fā)商場經(jīng)營的某種服裝,進貨成本40元/件,對外批發(fā)價定為60元/件.該商場為了鼓勵購買者大批量購買,推出優(yōu)惠政策:一次購買不超過50件時,只享受批發(fā)價;一次購買超過50件時,每購買1件,購買者所購買的所有服裝可在享受批發(fā)價的基礎(chǔ)上,再降低0.1元/件,但最低價不低于50元/件.

(1)問一次購買多少件時,售價恰好是50元/件?

(2)設(shè)購買者一次購買x件,商場的利潤為y元(利潤=銷售總額-成本),試寫出函數(shù)y=f(x)的表達式.并說明在售價高于50元/件時,購買者一次購買多少件,商場利潤最大.

查看答案和解析>>

科目:高中數(shù)學 來源:2008年普通高等學校招生全國統(tǒng)一考試(寧夏、海南卷)、數(shù)學(理科)解析 題型:044

設(shè)函數(shù),曲線y=f(x)在點(2,f(2))處的切線方程為y=3.

(Ⅰ)求y=f(x)的解析式:

(Ⅱ)證明:函數(shù)y=f(x)的圖像是一個中心對稱圖形,并求其對稱中心;

(Ⅲ)證明:曲線y=f(x)上任一點的切線與直線x=1和直線y=x所圍三角形的面積為定值,并求出此定值.

查看答案和解析>>

科目:高中數(shù)學 來源:山東省濟寧市某中學2012屆高三9月月考數(shù)學試題 題型:044

為了迎接世博會,某旅游區(qū)提倡低碳生活,在景區(qū)提供自行車出租.該景區(qū)有50輛自行車供游客租賃使用,管理這些自行車的費用是每日115元.根據(jù)經(jīng)驗,若每輛自行車的日租金不超過6元,則自行車可以全部租出;若超出6元,則每超過1元,租不出的自行車就增加3輛.為了便于結(jié)算,每輛自行車的日租金x(元)只取整數(shù),并且要求出租自行車一日的總收入必須高于這一日的管理費用,用y(元)表示出租自行車的日凈收入(即一日中出租自行車的總收入減去管理費用后的所得).

(1)求函數(shù)y=f(x)的解析式及其定義域;

(2)試問當每輛自行車的日租金定為多少元時,才能使一日的凈收入最多?

查看答案和解析>>

科目:高中數(shù)學 來源:2008年普通高等學校招生全國統(tǒng)一考試寧夏卷數(shù)學理科 題型:044

設(shè)函數(shù)f(x)=ax+(a,b∈Z),曲線y=f(x)在點(0,f(2))處的切線方程為y=3.

(Ⅰ)求f(x)的解析式:

(Ⅱ)證明:函數(shù)y=f(x)的圖像是一個中心對稱圖形,并求其對稱中心;

(Ⅲ)證明:曲線y=f(x)上任一點的切線與直線x=1和直線yx所圍三角形的面積為定值,并求出此定值.

查看答案和解析>>

同步練習冊答案