【題目】已知數(shù)列中,,對(duì)任意的,,有

1)求數(shù)列的通項(xiàng)公式;

2)設(shè)數(shù)列滿(mǎn)足,),

求數(shù)列的前項(xiàng)和;

設(shè)是正整數(shù),若存在正數(shù),對(duì)任意的正整數(shù),當(dāng)時(shí),都有,求m的最大值.

【答案】(1)(2)答案不唯一,具體見(jiàn)解析(3)的最大值為5

【解析】

1)先證明是首項(xiàng),公差都為1的等差數(shù)列,再寫(xiě)出數(shù)列的通項(xiàng);(2)①先求出,(),再分類(lèi)討論求出數(shù)列的前項(xiàng)和;②原題等價(jià)于存在正數(shù),對(duì)任意的正整數(shù)),當(dāng)時(shí),都有,再對(duì)分類(lèi)討論求出m的最大值.

1)由,,令,

,所以是首項(xiàng),公差都為1的等差數(shù)列,

所以的通項(xiàng)公式為

2)由題意,

),

兩式相減得),,(),

當(dāng)時(shí),滿(mǎn)足上式,所以,().

所以時(shí),,

時(shí),,

時(shí),,

3等價(jià)于,

原題等價(jià)于存在正數(shù),對(duì)任意的正整數(shù)),當(dāng)時(shí),都有,

①當(dāng)時(shí),,與題目要求不符;

②當(dāng)時(shí),,與題目要求不符;

③當(dāng)時(shí),當(dāng)時(shí),上式取對(duì)數(shù)得,

等價(jià)于,

設(shè),,則,

,單調(diào)遞增;

,單調(diào)遞減;

所以取最大值,

又因?yàn)?/span>,所以;

設(shè),,則,

設(shè),,,時(shí),所以遞減,

,所以恒成立,即遞減.

時(shí),,存在;

時(shí),,遞減,

,,

所以的最大值為5

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】第十一屆全國(guó)少數(shù)民族傳統(tǒng)體育運(yùn)動(dòng)會(huì)在河南鄭州舉行,某項(xiàng)目比賽期間需要安排3名志愿者完成5項(xiàng)工作,每人至少完成一項(xiàng),每項(xiàng)工作由一人完成,則不同的安排方式共有多少種

A.60B.90C.120D.150

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某種水箱用的浮球是由兩個(gè)相同半球和一個(gè)圓柱筒組成,它的軸截面如圖所示,已知半球的直徑是,圓柱筒高,為增強(qiáng)該浮球的牢固性,給浮球內(nèi)置一雙蝶形防壓卡,防壓卡由金屬材料桿,,,,,焊接而成,其中,分別是圓柱上下底面的圓心,,,均在浮球的內(nèi)壁上,AC,BD通過(guò)浮球中心,且、均與圓柱的底面垂直.

1)設(shè)與圓柱底面所成的角為,試用表示出防壓卡中四邊形的面積,并寫(xiě)出的取值范圍;

2)研究表明,四邊形的面積越大,浮球防壓性越強(qiáng),求四邊形面積取最大值時(shí),點(diǎn)到圓柱上底面的距離

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,平面ABCD平面PAD,,,EPD的中點(diǎn).

證明:;

設(shè),點(diǎn)M在線(xiàn)段PC上且異面直線(xiàn)BMCE所成角的余弦值為,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)的部分圖象如圖所示.

(1) 求函數(shù)的解析式;

(2) 如何由函數(shù)的通過(guò)適當(dāng)圖象的變換得到函數(shù)的圖象, 寫(xiě)出變換過(guò)程;

(3) 若,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè),函數(shù)

1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;

2)若函數(shù)在區(qū)間上有唯一零點(diǎn),試求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),是自然對(duì)數(shù)的底數(shù)).

(1)若函數(shù)在點(diǎn)處的切線(xiàn)方程為,試確定函數(shù)的單調(diào)區(qū)間;

(2)①當(dāng),時(shí),若對(duì)于任意,都有恒成立,求實(shí)數(shù)的最小值;②當(dāng)時(shí),設(shè)函數(shù),是否存在實(shí)數(shù),使得?若存在,求出的取值范圍;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,曲線(xiàn)的參數(shù)方程為,為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,直線(xiàn)的坐標(biāo)方程為,若直線(xiàn)與曲線(xiàn)相切.

(1)求曲線(xiàn)的極坐標(biāo)方程;

(2)在曲線(xiàn)上取兩點(diǎn)于原點(diǎn)構(gòu)成,且滿(mǎn)足,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,圓的參數(shù)方程為參數(shù)).以為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo)系.

1)求圓的極坐標(biāo)方程;

2)直線(xiàn)的極坐標(biāo)方程是,射線(xiàn)與圓的交點(diǎn)為,與直線(xiàn)的交點(diǎn)為,求線(xiàn)段的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案