【題目】下列四組函數(shù),表示同一函數(shù)的是(
A.f(x)= ,g(x)=x
B.f(x)=x,g(x)=
C.f(x)=lnx2 , g(x)=2lnx
D.f(x)=logaax(a>0,a≠1),g(x)=

【答案】D
【解析】解:A.f(x)=|x|,兩個函數(shù)的對應(yīng)法則不相同,所以A不是同一函數(shù).B.f(x)的定義域為R,而g(x)= =x的定義域為(﹣∞,0)∪(0,+∞),所以定義域不同,所以B不是同一函數(shù).
C.f(x)=lnx2=2lnx,x≠0,g(x)=2lnx,x>0,兩個函數(shù)的定義域不相同,所以C不是同一函數(shù).
D.f(x)=logaax(a>0,a≠1)=x,g(x)= =x,f(x)的定義域為R,而g(x)的定義域為R,兩個函數(shù)的定義域和對應(yīng)法則相同,所以D是同一函數(shù).
故選D.
分別判斷兩個函數(shù)的定義域和對應(yīng)法則是否一致,否則不是同一函數(shù).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)=
(1)證明:f(x)是定義域內(nèi)的增函數(shù);
(2)求f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在正方體ABCD﹣A1B1C1D1中,M為DD1的中點,O為底面ABCD的中心,P為棱A1B1上任意一點,則直線OP與直線AM所成的角是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】制定投資計劃時,不僅要考慮可能獲得的盈利,而且要考慮可能出現(xiàn)的虧損.某投資人打算投資甲、乙兩個項目.根據(jù)預(yù)測,甲、乙項目可能的最大盈利率分別為100%50%,可能的最大虧損分別為30%10%.投資人計劃投資金額不超過10萬元,要求確?赡艿馁Y金虧損不超過1.8萬元.問投資人對甲、乙兩個項目各投資多少萬元,才能使可能的盈利最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,角A,B,C的對邊分別為a,b,c,且 bcosA=asinB.
(1)求角A的大;
(2)若a=6,△ABC的面積是9 ,求三角形邊b,c的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)集合A={x∈R|2x﹣8=0},B={x∈R|x2﹣2(m+1)x+m2=0}
(1)若m=4,求A∪B;
(2)若A∪B=A,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)等比數(shù)列{an}的前項n和Sn , a2= ,且S1+ ,S2 , S3成等差數(shù)列,數(shù)列{bn}滿足bn=2n.
(1)求數(shù)列{an}的通項公式;
(2)設(shè)cn=anbn , 若對任意n∈N+ , 不等式c1+c2+…+cn λ+2Sn﹣1恒成立,求λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù) 的單調(diào)遞減區(qū)間為(
A.(﹣∞,+∞)
B.(﹣∞,0)∪(0,+∞)
C.(﹣∞,0),(0,+∞)
D.(0,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線y2=4x的焦點為F,過點F的直線交拋物線于A,B兩點.
(1)若 =3 ,求直線AB的斜率;
(2)設(shè)點M在線段AB上運動,原點O關(guān)于點M的對稱點為C,求四邊形OACB面積的最小值.

查看答案和解析>>

同步練習(xí)冊答案