如圖,AB是底面半徑為1的圓柱的一條母線,O為下底面中心,BC是下底面的一條切線。
(1)求證:OB⊥AC;
(2)若AC與圓柱下底面所成的角為30°,OA=2。求三棱錐A-BOC的體積。
(1)見解析;(2)。
解析試題分析:(1)要證,可轉(zhuǎn)化為證OB⊥平面ABC,而根據(jù)圓的切線性質(zhì)、圓柱母線定義可知,即OB⊥平面ABC;(2)三棱錐A-BOC的體積等于,在RtΔOA B中,AB=,由題意知,故,代入公式即可。
試題解析: (1)連結(jié)OB,由圓的切線性質(zhì)有OB⊥BC,圓柱母線性質(zhì)有,又,
∴OB⊥平面ABC,∴OB⊥AC。
(2)在RtΔOA B中,AB=.
又∵∠ACB就是AC與底面⊙O所成角,,
考點(diǎn):(1)圓的切線性質(zhì)、圓柱母線定義;(2)線面垂直判定及性質(zhì)定理的應(yīng)用;(3)三棱錐體積公式。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,斜三棱柱的底面是直角三角形,,點(diǎn)在底面內(nèi)的射影恰好是的中點(diǎn),且
(1)求證:平面平面;
(2)若,求點(diǎn)到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知△ABC是邊長為l的等邊三角形,D、E分別是AB、AC邊上的點(diǎn),AD = AE,F(xiàn)是BC的中點(diǎn),AF與DE交于點(diǎn)G,將△ABF沿AF折起,得到三棱錐A-BCF,其中.
(1)證明:DE∥平面BCF;
(2)證明:CF⊥平面ABF;
(3)當(dāng)時,求三棱錐F-DEG的體積V.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,已知在側(cè)棱垂直于底面三棱柱中,,,,,點(diǎn)是的中點(diǎn).
(1)求證:;
(2)求證:
(3)求三棱錐的體積.
|
|
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,四棱錐中,底面是平行四邊形,,平面,,,是的中點(diǎn).
(1)求證:平面;
(2)求平面與平面所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
A是△BCD平面外的一點(diǎn),E,F(xiàn)分別是BC,AD的中點(diǎn).
(1)求證:直線EF與BD是異面直線;
(2)若AC⊥BD,AC=BD,求EF與BD所成的角.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com