【題目】已知過點(diǎn)的動(dòng)直線與圓相交于兩點(diǎn),與直線相交于.
(1)當(dāng)與垂直時(shí),求直線的方程,并判斷圓心與直線的位置關(guān)系;
(2)當(dāng)時(shí),求直線的方程.
【答案】(1),圓心在直線上;(2)或.
【解析】
試題分析:(1)若兩直線垂直,根據(jù)斜率乘積為可得,由此求得直線的方程為,圓心坐標(biāo)滿足這個(gè)方程,故圓心在這條直線上;(2)當(dāng)直線斜率不存在時(shí),符合題意,此時(shí)直線方程為;當(dāng)直線斜率存在時(shí),設(shè)出直線的方程,利用圓的弦長公式建立方程,解出斜率,從而求得直線方程.
試題解析:(1)∵與垂直,且,
故直線方程為,即,
圓心在上,理由是圓心坐標(biāo)滿足直線方程.
(2)①當(dāng)直線與軸垂直時(shí),易知符合題意;
②當(dāng)直線與軸不垂直時(shí),設(shè)直線的方程為,即,
∵,則由,得,
所以直線.故直線的方程為或.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),求函數(shù)的單調(diào)遞減區(qū)間;
(2)當(dāng)時(shí),設(shè)函數(shù).若函數(shù)在區(qū)間上有兩個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某企業(yè)開發(fā)一種新產(chǎn)品,現(xiàn)準(zhǔn)備投入適當(dāng)?shù)膹V告費(fèi),對(duì)產(chǎn)品進(jìn)行促銷,在一年內(nèi),預(yù)計(jì)年銷量Q(萬件)與廣告費(fèi)x(萬件)之間的函數(shù)關(guān)系為,已知生產(chǎn)此產(chǎn)品的年固定投入為3萬元,每年產(chǎn)1萬件此產(chǎn)品仍需要投入32萬元,若年銷售額為,而當(dāng)年產(chǎn)銷量相等。
(1)試將年利潤P(萬件)表示為年廣告費(fèi)x(萬元)的函數(shù);
(2)當(dāng)年廣告費(fèi)投入多少萬元時(shí),企業(yè)年利潤最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我國是世界上嚴(yán)重缺水的國家之一,城市缺水問題較為突出.某市政府為了鼓勵(lì)居民節(jié)約用水,計(jì)劃調(diào)整居民生活用水收費(fèi)方案,擬確定一個(gè)合理的月用水量標(biāo)準(zhǔn)(噸),一位居民的月用水量不超過的部分按平價(jià)收費(fèi),超出的部分按議價(jià)收費(fèi).為了了解居民用水情況,通過抽樣,獲得了某年100位居民每人的月均用水量(單位:噸),將數(shù)據(jù)按照,…,分成9組,制成了如圖所示的頻率分布直方圖.
(1)求直方圖中的值;
(2)若該市有110萬居民,估計(jì)全市居民中月均用水量不低于3噸的人數(shù),請(qǐng)說明理由;
(3)估計(jì)居民月均用水量的中位數(shù)(精確到0.01)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的極值點(diǎn);
(2)若函數(shù)在區(qū)間[2,6]內(nèi)有極值,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司生產(chǎn)一批產(chǎn)品需要原材料500噸,每噸原材料可創(chuàng)造利潤12萬元,該公司通過設(shè)備升級(jí),生產(chǎn)這批產(chǎn)品所需原材料減少了噸,且每噸原材料創(chuàng)造的利潤提高了;若將少用的噸原材料全部用于生產(chǎn)公司新開發(fā)的產(chǎn)品,每噸原材料創(chuàng)造的利潤為萬元,其中a>0.
(1)若設(shè)備升級(jí)后生產(chǎn)這批A產(chǎn)品的利潤不低于原來生產(chǎn)該批A產(chǎn)品的利潤,求的取值范圍;
(2)若生產(chǎn)這批B產(chǎn)品的利潤始終不高于設(shè)備升級(jí)后生產(chǎn)這批A產(chǎn)品的利潤,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,棱形的邊長為6, ,.將棱形沿對(duì)角線折起,得到三棱錐,點(diǎn)是棱的中點(diǎn), .
(Ⅰ)求證:∥平面;
(Ⅱ)求三棱錐的體積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com