1
12+2
+
1
22+4
+
1
32+6
+…+
1
n2+2n
=
3
4
-
 
考點:數(shù)列的求和
專題:計算題,等差數(shù)列與等比數(shù)列
分析:利用裂項法求和,即可得出結論.
解答: 解:
1
n2+2n
=
1
n(n+2)
=
1
2
1
n
-
1
n+2
),
1
12+2
+
1
22+4
+
1
32+6
+…+
1
n2+2n
=
1
2
(1-
1
3
+
1
2
-
1
4
+…+
1
n
-
1
n+2
)=
1
2
(1+
1
2
-
1
n
-
1
n+2
)=
3
4
-
n+1
n(n+2)

故答案為:
n+1
n(n+2)
點評:本題考查數(shù)列的求和,正確運用裂項法是關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
x
+
2-x
,求f(x)值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
eax
x

(1)若f(x)在區(qū)間[1,+∞)單調(diào)遞增,求實數(shù)a的取值范圍;
(2)當a=
1
2
時,求函數(shù)f(x)在區(qū)間[m,m+1](m>0)上的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,直角三角形ABC中,∠ACB=90°,AB=2BC=4,D、E分別為AC、AB邊的中點.將△ADE沿DF折起,使二面角A-DE-C的余弦值為
1
3
,求:
(Ⅰ)四棱錐A-BCDE的體積;
(Ⅱ)二面角A-BE-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

從某學校的800名男生中隨機抽取50名測量身高,被測學生身高全部介于155cm和195cm之間,將測量結果按如下方式分成八組:第一組[155,160),第二組[160,165),…,第八組[190,195],右圖是按上述分組方法得到的頻率分布直方圖的一部分,已知第一組與第八組人數(shù)相同,第六組的人數(shù)為4人.
(Ⅰ)求第七組的頻率;
(Ⅱ)估計該校的800名男生的身高的中位數(shù)以及身高在180cm以上(含180cm)的人數(shù);
(Ⅲ)若從身高屬于第六組和第八組的所有男生中隨機抽取兩名男生,記他們的身高分別為x,y,事件E={|x-y|≤5},事件F={|x-y|>15},求P(E∪F).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1
(a>b>0)的離心率為
3
2
,左右焦點分別為F1、F2,點G在橢圓上,且
GF1
GF2
=0,△GF1F2的面積為6,則橢圓C的方程為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)=ax2+bx+c,若f(0)=0,且f(x+1)=f(x)+x+1,則f(x)=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

先閱讀下面的文字:“求
1+
1+
1+…
的值時,采用了如下方法:令
1+
1+
1+…
=x,則有x=
1+x
,兩邊同時平方,得1+x=x2,解得x=
1+
5
2
(負值已舍去)”可用類比的方法,求得1+
1
2+
1
1+
1
2+…
的值等于(  )
A、
3
-1
2
B、
3
+1
2
C、
1-
3
2
D、
-1-
3
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

7人排成一排,若A、B兩人連排在一起,C、D、E三人兩兩不相鄰,F(xiàn)、G兩人順序一定,不同的排法有
 
種?

查看答案和解析>>

同步練習冊答案