分析:(1)n=1時(shí),a
1=
S1= a12+a1-1,n≥2時(shí),
Sn= an2+an-1,再寫(xiě)一式,兩式相減,可得數(shù)列{a
n}是以2為首項(xiàng),1為公差的等差數(shù)列,從而可求數(shù)列的通項(xiàng);
(2)T
n=a
1b
1+a
2b
2+…+a
nb
n=2×2
1+3×2
2+…+(n+1)×2
n,利用錯(cuò)位相減法可求數(shù)列的和.
解答:解:(1)由已知正項(xiàng)數(shù)列{a
n}
n=1時(shí),a
1=
S1= a12+a1-1,解得a
1=2
n≥2時(shí),∵
Sn= an2+an-1①
∴
Sn-1= an-12+an-1-1②
①-②可得(a
n+a
n-1)(a
n-a
n-1-1)=0
∵a
n+a
n-1>0,∴a
n-a
n-1-1=0
∴數(shù)列{a
n}是以2為首項(xiàng),1為公差的等差數(shù)列
∴a
n=2+(n-1)×1=n+1
(2)T
n=a
1b
1+a
2b
2+…+a
nb
n=2×2
1+3×2
2+…+(n+1)×2
n③
∴2T
n=2×2
2+…+n×2
n+(n+1)×2
n+1④
④-③可得T
n=-2×2
1-2
2-…-2
n+(n+1)×2
n+1=-4-
+(n+1)×2
n+1=n•2
n-1∴T
n=n•2
n-1.
點(diǎn)評(píng):本題考查等差數(shù)列的通項(xiàng),考查數(shù)列的求和,確定數(shù)列的通項(xiàng),利用錯(cuò)位相減法求數(shù)列的和是關(guān)鍵.