如圖,四邊形ABCD中,DF⊥AB,垂足為F,DF=3,AF=2FB=2,延長FB到E,使BE=FB,連接BD,EC.若BD∥EC,則四邊形ABCD的 面 積為


  1. A.
    4
  2. B.
    5
  3. C.
    6
  4. D.
    7
C
分析:由CE∥DB可得 S△DBC=S△DBE,故有S四邊形ABCD =S△ADE,而S△ADE 容易求得.
解答:連接DE,由題意知,AF=2 FB=BE=1,
∴S△ADE=AE×DF=×4×3=6,∵CE∥DB,∴S△DBC=S△DBE,
∴S四邊形ABCD =S△ADE =6,
故選 C.
點評:本題考查平面幾何的有關(guān)知識,利用平行線的性質(zhì)可得同底等高的兩個三角形的面積相等.體現(xiàn)了轉(zhuǎn)化的數(shù)學思想.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,四邊形ABCD與A′ABB′都是邊長為a的正方形,點E是A′A的中點,A′A⊥平面ABCD.
(1) 求證:A′C∥平面BDE;
(2) 求證:平面A′AC⊥平面BDE
(3) 求平面BDE與平面ABCD所成銳二面角的正切值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,四邊形ABCD為正方形,QA⊥平面ABCD,PD∥QA,QA=AB=
12
PD.
(Ⅰ)證明PQ⊥平面DCQ;
(Ⅱ)求棱錐Q-ABCD的體積與棱錐P-DCQ的體積的比值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,四邊形ABCD為矩形,且AD=2,AB=1,PA⊥平面ABCD,PA=1,E為BC的中點.
(1)求點C到面PDE的距離;  
(2)求二面角P-DE-A的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,四邊形ABCD內(nèi)接于⊙O,如果它的一個外角∠DCE=64°,那么∠BOD
128°
128°

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,四邊形ABCD為正方形,PD⊥平面ABCD,PD∥QA,QA=AB=
12
PD.
(1)證明:平面PQC⊥平面DCQ;
(2)求二面角D-PQ-C的余弦值.

查看答案和解析>>

同步練習冊答案