AB,AB,()(),()()

答案:略
解析:

A={y|y4},B={y|y14},數(shù)軸,觀察知AB={y|4y14},AB=R={y|y<-4},={y14},

()(),()()={y|y<-4y14}


練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知動圓M過定點F(2,0),且與直線x=-2相切,動圓圓心M的軌跡為曲線C
(1)求曲線C的方程
(2)若過F(2,0)且斜率為1的直線與曲線C相交于A,B兩點,求|AB|

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=sin(2x-
π
6
)+2cos2x-1  (x∈R)

(Ⅰ)求f(x)的單調(diào)遞增區(qū)間;
(Ⅱ)△ABC的三邊a,b,c中,已知ac=2,且f(
B
2
)=1
,求
AB
BC
的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知焦點在x軸上,中心在坐標原點的橢圓C的離心率為
4
5
,且過點P(
10
2
3
,1)

(1)求橢圓C的標準方程
(2)直線l:y=kx+m分別切橢圓C與圓M:x2+y2=15于A、B兩點,求|AB|的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓
y2
a2
+
x2
b2
=1 (a>b>0)
的離心率e滿足3, 
1
e
, 
4
9
成等比數(shù)列,且橢圓上的點到焦點的最短距離為2-
3
.過點(2,0)作直線l交橢圓于點A,B.
(1)若AB的中點C在y=4x(x≠0)上,求直線l的方程;
(2)設(shè)橢圓中心為,問是否存在直線l,使得的面積滿足2S△AOB=|OA|•|OB|?若存在,求出直線AB的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2007•崇明縣一模)已知如圖,直線l:x=-
p
2
(p>0),點F(
p
2
,0)
,P為平面上的動點,過P作直線l的垂線,垂足為點Q,且
QP
QF
=
FP
FQ

(1)求動點P的軌跡C的方程;
(2)當p=2時,曲線C上存在不同的兩點關(guān)于直線y=kx+3對稱,求實數(shù)k滿足的條件(寫出關(guān)系式即可);
(3)設(shè)動點M (a,0),過M且斜率為1的直線與軌跡C交于不同的兩點A,B,線段AB的中垂線與x軸交于點N,當|AB|≤2p時,求△NAB面積的最大值.

查看答案和解析>>

同步練習冊答案