【題目】已知:三棱錐中,側面垂直底面, 是底面最長的邊;圖1是三棱錐的三視圖,其中的側視圖和俯視圖均為直角三角形;圖2是用斜二測畫法畫出的三棱錐的直觀圖的一部分,其中點平面內.

Ⅰ)請在圖2中將三棱錐的直觀圖補充完整,并指出三棱錐的哪些面是直角三角形;

Ⅱ)設二面角的大小為,求的值;

求點到面的距離.

【答案】(1)見解析(2)(3)

【解析】試題分析:(1)由三視圖還原(如下圖)可知, H為BC中點, , ,所以是直角三角形

(2)由等體積法由可求得點到面的距離。

試題解析:(Ⅰ)補充完整的三棱錐的直觀圖如圖所示;

由三視圖知是直角三角形.

(Ⅱ)如圖,過于點.

由三視圖知, , ,

∴在圖中所示的坐標系下,相關點的坐標為: , , ,

, ,

.

設平面、平面的法向量分別為,

, ,得

, 得, ,即

, ,得

, 得 ,即

,則

∵二面角的大小為銳角,∴的值為

(Ⅲ)記到面的距離為,

, , ,

,

, .

又三棱錐的體積

,可得:

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)f(x)的定義域為D,若存在閉區(qū)間[a,b]D,使得函數(shù)f(x)滿足:
①f(x)在[a,b]上是單調函數(shù);
②f(x)在[a,b]上的值域是[2a,2b],則稱區(qū)間[a,b]是函數(shù)f(x)的“和諧區(qū)間”.
下列結論錯誤的是(
A.函數(shù)f(x)=x2(x≥0)存在“和諧區(qū)間”
B.函數(shù)f(x)=2x(x∈R)存在“和諧區(qū)間”
C.函數(shù)f(x)= (x>0)不存在“和諧區(qū)間”
D.函數(shù)f(x)=log2x(x>0)存在“和諧區(qū)間”

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】以下是某地搜集到的新房屋的銷售價格和房屋的面積的數(shù)據(jù):

房屋面積(

115

110

80

135

105

銷售價格(萬元)

24.8

21.6

18.4

29.2

22

(1)畫出數(shù)據(jù)對應的散點圖;

(2)求線性回歸方程,并在散點圖中加上回歸直線;

(3)據(jù)(2)的結果估計當房屋面積為150時的銷售價格.附:回歸直線的斜率和截距的最小二乘法估計公式分別為:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知過點 的光線,經 軸上一點 反射后的射線 過點 .
(1)求點 的坐標;
(2)若圓 過點 且與 軸相切于點 ,求圓 的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知在直角坐標系xOy中,以坐標原點為極點,x軸正半軸為極軸建立極坐標系,圓錐曲線C的極坐標方程為ρ2= ,F(xiàn)1是圓錐曲線C的左焦點.直線l: (t為參數(shù)).
(1)求圓錐曲線C的直角坐標方程和直線l的直角坐標方程;
(2)若直線l與圓錐曲線C交于M,N兩點,求|F1M|+|F1N|.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若圓C的半徑為1,圓心在第一象限,且與直線4x-3y=0和x軸都相切,則該圓的標準方程是( )
A.(x-2)2+(y-1)2=1
B.(x-2)2+(y-3)2=1
C.(x-3)2+(y-2)2=1
D.(x-3)2+(y-1)2=1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=x2﹣lnx.
(1)求函數(shù)y=f(x)的單調區(qū)間;
(2)設g(x)=x﹣t,若函數(shù)h(x)=g(x)﹣f(x)在[ ,e]上(這里e≈2.718)恰有兩個不同的零點,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】記函數(shù)的定義域為, )的定義域為.

(1)求;

(2)若,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)當時,求滿足的取值;

(2)若函數(shù)是定義在上的奇函數(shù)

①存在,不等式有解,求的取值范圍;

②若函數(shù)滿足,若對任意,不等式恒成立,求實數(shù)的最大值.

查看答案和解析>>

同步練習冊答案