曲線在在x=1處的切線的傾斜角為   
【答案】分析:利用求導法則求出曲線解析式的導函數(shù),把x=1代入求出對應的導函數(shù)值即為切線方程的斜率,根據(jù)直線斜率與傾斜角的正切值相等,可得出傾斜角的正切值,根據(jù)傾斜角的范圍,利用特殊角的三角函數(shù)值即可求出傾斜角的度數(shù).
解答:解:求導得:y′=x2-2x,
把x=1代入導函數(shù)得:y′|x=1=1-2=-1,
∴切線方程的斜率k=tanα=-1(設(shè)α為切線的傾斜角),
又α∈[0,π),∴α=
故答案為:
點評:此題考查了導數(shù)的幾何意義,特殊角的三角函數(shù)值以及直線的傾斜角,掌握切點橫坐標對應的導函數(shù)值為切線方程的斜率,以及直線的斜率等于直線傾斜角的正切值是解本題的關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:2010-2011學年遼寧省丹東市寬甸二中高二下學期期末考試數(shù)學(文) 題型:解答題

(本小題滿分12分)
設(shè)函數(shù)=x+ax2+blnx,曲線y=P(1,0),且在P點處的切斜線率為2.
(I)求a,b的值;
(II)證明:≤2x-2.

查看答案和解析>>

科目:高中數(shù)學 來源:2014屆安徽省馬鞍山市高二下學期期中考試文科數(shù)學試卷(解析版) 題型:解答題

設(shè)函數(shù)=x+ax2+blnx,曲線y=過P(1,0),且在P點處的切斜線率為2.

(1)求a,b的值;

(2)證明:≤2x-2.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2013屆陜西省高二下學期期末文科數(shù)學試卷(解析版) 題型:解答題

(13分)設(shè)函數(shù)=x+ax2+blnx,曲線y=過P(1,0),且在P點處的切斜線率為2.

(I)求a,b的值;(II)證明:≤2x-2.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2011年遼寧省招生統(tǒng)一考試文科數(shù)學 題型:解答題

 

(本小題滿分12分)

    設(shè)函數(shù)f(x)=x+ax2+blnx,曲線y=f(x)過P(1,0),且在P點處的切斜線率為2.

    (I)求a,b的值;

    (II)證明:f(x)≤2x-2。

 

查看答案和解析>>

科目:高中數(shù)學 來源:2012屆遼寧省丹東市高二下學期期末考試數(shù)學(文) 題型:解答題

(本小題滿分12分)

設(shè)函數(shù)=x+ax2+blnx,曲線y=P(1,0),且在P點處的切斜線率為2.

(I)求ab的值;

(II)證明:≤2x-2.

 

查看答案和解析>>

同步練習冊答案