設(shè)α,β為兩個不重合的平面,m,n為兩條不重合的直線,給出下列四個命題:
①若m⊥n,m⊥α,n?α則n∥α;
②若α⊥β,則α∩β=m,n?α,n⊥m,則n⊥β;
③若m⊥n,m∥α,n∥β,則α⊥β;
④若n?α,m?β,α與β相交且不垂直,則n與m不垂直.
其中,所有真命題的序號是________.
①②
③錯誤,α,β相交或平行;④錯誤,n與m可以垂直,不妨令n=α∩β,則在β內(nèi)存在m⊥n.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在四棱錐P­ABCD中,PA⊥底面ABCD,ACCD,∠DAC=60°,ABBCAC,EPD的中點,FED的中點.
 
(1)求證:平面PAC⊥平面PCD;
(2)求證:CF∥平面BAE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在四棱錐中,底面ABCD是正方形,側(cè)棱底面ABCD,,E是PC的中點.

(Ⅰ)證明 平面EDB;
(Ⅱ)求EB與底面ABCD所成的角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

下列命題正確的是(  )
A.若兩條直線和同一個平面所成的角相等,則這兩條直線平行
B.若一個平面內(nèi)有三個點到另一個平面的距離相等,則這兩個平面平行
C.若一條直線平行于兩個相交平面,則這條直線與這兩個平面的交線平行
D.若兩個平面都垂直于第三個平面,則這兩個平面平行

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)直線m與平面α相交但不垂直,則下列說法中正確的是(  )
A.在平面α內(nèi)有且只有一條直線與直線m垂直
B.過直線m有且只有一個平面與平面α垂直
C.與直線m垂直的直線不可能與平面α平行
D.與直線m平行的平面不可能與平面α垂直

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

在正方體ABCD ­A1B1C1D1中,點M,N分別在AB1,BC1上(M,N不與B1,C1重合),且AM=BN,那么①AA1⊥MN;②A1C1∥MN;③MN∥平面A1B1C1D1;④MN與A1C1異面,以上4個結(jié)論中,正確結(jié)論的序號是________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)m,n是兩條不同的直線,α,β是兩個不重合的平面,給定下列四個命題:①⇒m⊥α;②⇒α⊥β;
⇒m∥n;④⇒m∥n
其中為真命題的序號是________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如圖所示,在四邊形ABCD中,ADBC,ADAB,∠BCD=45°,∠BAD=90°.將△ADB沿BD折起,使平面ABD⊥平面BCD,構(gòu)成三棱錐ABCD.則在三棱錐ABCD中,下列命題正確的是(  ).
A.平面ABD⊥平面ABC
B.平面ADC⊥平面BDC
C.平面ABC⊥平面BDC
D.平面ADC⊥平面ABC

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如圖所示,在正三棱柱ABCA1B1C1中,AB=1.若二面角CABC1的大小為60°,則點C到平面C1AB的距離為(  ).
A.B.C.D.1

查看答案和解析>>

同步練習冊答案