設(shè)數(shù)列的前項和為.已知,,.
(Ⅰ)設(shè),求數(shù)列的通項公式;
(Ⅱ)若,證明對任意的 ,不等式
恒成立.
(Ⅰ)解:依題意,,即,
由此得.
因此,所求通項公式為,.……………………5分
(Ⅱ)證明:由已知,
則,所以
.……………………7分
下面用數(shù)學歸納法證明不等式
成立.
①當時,左邊=,右邊=,因為,所以不等式成立. …………………8分
②假設(shè)當時不等式成立,即
成立.
則當時,左邊
=
.……………………………………………………………………………11分
要證成立,
只需證成立,
由于,
只需證成立,
只需證成立,
只需證成立,
由于,所以成立.
即
成立.
所以當時,不等式也成立.
由①,②可得不等式恒成立. ………………………………………………………………14分
科目:高中數(shù)學 來源: 題型:
設(shè)數(shù)列的前項和為,已知,且
,
其中為常數(shù).
(Ⅰ)求與的值;
(Ⅱ)證明:數(shù)列為等差數(shù)列;
(Ⅲ)證明:不等式對任何正整數(shù)都成立.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
設(shè)數(shù)列的前項和為,已知對任意正整數(shù),都有成立。
(I)求數(shù)列的通項公式;
(II)設(shè),數(shù)列的前項和為,求證:。
查看答案和解析>>
科目:高中數(shù)學 來源:2011屆浙江省杭州市七校高三上學期期中考試數(shù)學理卷 題型:解答題
(本小題滿分14分)設(shè)數(shù)列的前項和為,已知.
(1)求數(shù)列的通項公式;
(2)問數(shù)列中是否存在某三項,它們可以構(gòu)成一個等差數(shù)列?若存在,請求出一組適合條件的項;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源:2008年普通高等學校招生全國統(tǒng)一考試理科數(shù)學(全國卷Ⅱ) 題型:解答題
(本小題滿分12分)
設(shè)數(shù)列的前項和為。已知,,。
(Ⅰ)設(shè),求數(shù)列的通項公式;
(Ⅱ)若,,求的取值范圍。
查看答案和解析>>
科目:高中數(shù)學 來源:2014屆河南省高二第一次月考數(shù)學試卷(解析版) 題型:解答題
設(shè)數(shù)列的前項和為,已知
(Ⅰ)求證:數(shù)列為等差數(shù)列,并寫出關(guān)于的表達式;
(Ⅱ)若數(shù)列前項和為,問滿足的最小正整數(shù)是多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com